检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shiwei LU Ruihu LI Xuan CHEN Yuena MA
机构地区:[1]Department of Basic Sciences,Air Force Engineering University,Xi’an,710051,China
出 处:《Frontiers of Computer Science》2022年第6期171-173,共3页中国计算机科学前沿(英文版)
基 金:supported by the National Natural Science Foundation of China (Grand Nos.11901579,11801564).
摘 要:1 Introduction As a new mode of distributed learning,Federated Learning(FL)helps multiple organizations or clients to jointly train an artificial intelligence model without sharing their own datasets.Compared with the model trained by each client alone,a high-accuracy federated model can be obtained after multiple communication rounds in FL.Due to the characteristics of privacy protection and distributed learning,FL has been applied in many fields,such as the prognosis of pandemicdiseases,smartmanufacturing systems,etc.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.136.19.165