检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐嘉 简志华[1] 金宏辉 吴超[1] 游林[2] 吴迎笑[3] XU Jia;JIAN Zhihua;JIN Honghui;WU Chao;YOU Lin;WU Yingxiao(School of Communication Engineering,Hangzhou Dianzi University,Hangzhou 310018,China;School of Cyberspace Security,Hangzhou Dianzi University,Hangzhou 310018,China;School of Computer,Hangzhou Dianzi University,Hangzhou 310018,China)
机构地区:[1]杭州电子科技大学通信工程学院,浙江杭州310018 [2]杭州电子科技大学网络空间安全学院,浙江杭州310018 [3]杭州电子科技大学计算机学院,浙江杭州310018
出 处:《电信科学》2023年第1期72-78,共7页Telecommunications Science
基 金:国家自然科学基金资助项目(No.61201301,No.61772166,No.61901154)。
摘 要:针对基于局部二值模式的伪装语音检测方法的合成语音检测准确度较低的情况,提出了一种基于中心对称局部二值模式的伪装语音检测方法。该方法通过短时傅里叶变换得到语音信号的语谱图,再利用中心对称局部二值模式提取语谱图的纹理特征,并用该纹理特征训练随机森林分类器,从而实现真伪语音的判别。该方法综合考虑语谱图中像素点的数值大小和位置关系,包含了更加全面的纹理信息,并将特征维度降低至16维,有利于减少计算量。实验结果表明,在ASVspoof 2019数据集上,与传统的基于局部二值模式的伪装语音检测方法相比,所提方法将合成伪装语音的串联检测代价函数(t-DCF)降低了16.98%,检测速度提高了89.73%。In view of the fact that the local binary pattern(LBP) based speech spoofing detection method has low detection accuracy when detecting synthetic speech, a spoofing speech detection method based on center-symmetric local binary pattern(CSLBP) was proposed. In this method, the spectrogram of the speech signal was obtained through short-time Fourier transform(STFT), and then the texture feature was extracted from the spectrogram using the CSLBP. The random forest classifier was trained by the extracted texture feature to realize the discrimination of genuine and spoofing speech. The CSLBP-based method comprehensively considered the value and position relationship of pixels in the spectrogram so as to contain more texture information, and reduced the feature dimension to 16beneficial to decrease the amount of computation. Experimental results on the ASVspoof 2019 dataset show that,compared with the LBP-based spoofing detection method, the proposed method reduced the tandem detection cost function(t-DCF) of synthetic spoofing speech by 16.98% and increased the detection speed by 89.73%.
关 键 词:说话人验证 伪装语音检测 中心对称局部二值模式 随机森林
分 类 号:TP391.42[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.164.48