改进小波阈值去噪方法在电机电流信号处理中的应用  被引量:4

Application of Improved Wavelet Threshold Denoising Method in Motor Current Signal Processing

在线阅读下载全文

作  者:马欢 程膺豪 蔡飞[1] 张玲 沈志豪 Ma Huan;Cheng Yinghao;Cai Fei;Zhang Ling;Shen Zhihao(Wuhan Huazhong Numerical Control Co.,Ltd.,Wuhan 430223,China)

机构地区:[1]武汉华中数控股份有限公司,武汉430223

出  处:《机电工程技术》2022年第11期55-57,72,共4页Mechanical & Electrical Engineering Technology

基  金:国防基础科研计划项目(编号:JCKY2019204A001)。

摘  要:为提升电流法分析诊断机床故障的能力,保障机床更加稳定运行,提出基于改进的小波阈值函数的电机电流信号去噪方案。基于小波去噪理论,通过对传统小波阈值去噪算法研究,讨论当前典型阈值函数的优劣,构建新的小波阈值函数,分析其数学特性及其在信号去噪领域的优势。并在数控加工车间搭建伺服电机电流信号的采集系统,对现场采集到的电机电流含噪信号进行去噪仿真实验。仿真结果表明,改进阈值函数的去噪方案能有效地滤除电机电流信号中主要干扰,在将阈值函数作为唯一变量的情况下,采用改进方案对伺服电机电流信号进行去噪的性能指标更佳,对利用电流法分析诊断机床故障的研究有一定的参考价值。In order to improve the ability of current method to analyze and diagnose machine tool faults and ensure more stable operation ofmachine tools,a denoising scheme of motor current signal based on improved wavelet threshold function was proposed.Based on the waveletdenoising theory,through the research on the traditional wavelet threshold denoising algorithm,the advantages and disadvantages of the currenttypical threshold function were discussed,a new wavelet threshold function was constructed,and its mathematical characteristics and itsadvantages in the field of signal denoising were analyzed.A collection system for the current signal of the servo motor was built in the CNCmachining workshop,and a simulation experiment of denoising was carried out on the noise signal of the motor current collected on site.Thesimulation results show that the denoising scheme of the improved threshold function can effectively filter out the main interference in themotor current signal.In the case of using the threshold function as the only variable,the improved scheme is used to denoise the servo motorcurrent signal.The performance index is better,which has a certain reference value for the research of analyzing and diagnosing machine toolfaults using the current method.

关 键 词:小波去噪 阈值函数 电机 电流信号 

分 类 号:TM301[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象