检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李徽 LI Hui(Jiangsu Automation Research Institute,Lianyungang 222006,China)
出 处:《兵器装备工程学报》2023年第1期204-208,共5页Journal of Ordnance Equipment Engineering
基 金:国防科技173计划技术领域基金项目(2021-JCJQ-JJ-1182)。
摘 要:针对单站无源定位系统中,观测站机动导致的滤波精度降低问题,提出了一种基于距离参数化CKF的单站无源定位方法(range-parameterised cubature kalman filter smoothing,RPCKFS)。引入距离参数化的思想,结合观测站观测范围作为先验值,将观测范围划分为若干个区间,并赋予初始权重,在各个区间引入后向平滑容积卡尔曼滤波(cubature kalman filter smoothing,CKFS),利用各时刻的预测值与观测值的比值来更新区间权重,最后对各区间状态信息加权融合来实现目标状态的获取。仿真结果表明:该方法能够有效降低滤波全局对观测站机动的敏感性,提高滤波稳定性与定位精度。Aiming at the problem that the filtering accuracy decreases due to the maneuvering of the observation station,this paper proposes a single-station passive positioning method based on the Range-Parameterized Cubature Kalman Filter Smoothing(PRCKFS).The idea of distance parameterization is introduced,combined with the observation range of the observation station as the prior value.The observation range is divided into several intervals,and the initial weights are given.Backward Cubature Kalman Filter Smoothing(CKFS)is introduced into each interval,whose weight is updated by the ratio of the predicted value and the observed value,and finally the target state is obtained through a weighted fusion of the state information of each interval.The simulation results show that the method can effectively reduce the sensitivity of the global filtering to the maneuvering of the observation station,and improve filtering stability and positioning accuracy.
关 键 词:单站无源定位 容积卡尔曼滤波 距离参数化 后向平滑
分 类 号:TJ812[兵器科学与技术—武器系统与运用工程] TN971[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90