一种抑制杂波的高精度车载雷达目标检测方法  被引量:9

High-precision vehicle radar target detection method with clutter suppression

在线阅读下载全文

作  者:杨路[1] 周文豪 余翔[1] 宋枚阳 冯春桃 Yang Lu;Zhou Wenhao;Yu Xiang;Song Meiyang;Feng Chuntao(Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)

机构地区:[1]重庆邮电大学通信与信息工程学院,重庆400065

出  处:《仪器仪表学报》2022年第10期145-151,共7页Chinese Journal of Scientific Instrument

摘  要:针对FMCW毫米波车载雷达目标检测过程中易受杂波影响的问题,提出一种可有效抑制杂波的检测方法。首先运用压扩算法对三帧差法进行改进,使其能够较好分离回波中的杂波和目标信号;然后引入CFAR算法滤除回波中的杂波,并运用密度峰值聚类算法寻找目标簇;再将目标簇中目标点的功率值转换成对应的权重,实现对经典重心法的改进,从而有效提升目标定位的准确性。实验结果表明,在停车场、直线路段、城市街道和校园路等4种场景中,该方法的检测准确度分别达到96.5%、95.9%、95.6%以及94.4%。同时,在检测速度方面,单帧雷达回波信号的处理周期可达到0.3 s左右,可以满足实际应用的需求。The process of target detection of FMCW mmWave vehicle mounted radar can be easily affected by clutter. To address this issue, a detection method that can effectively suppress clutter is proposed. Firstly, the companding algorithm is used to improve the three-frame difference method. In this way, it can better separate the clutter and target signal in the echo waves. Then, the CFAR algorithm is introduced to filter the clutter in the echoes, and the density peak clustering algorithm is used to find the target clusters. Finally, the power value of the target point in the target cluster is converted into the corresponding weight to improve the classical center of gravity method. The accuracy of target positioning is effectively improved. Experimental results show that the detection accuracy of this method reaches 96.5%, 95.9%, 95.6%, and 94.4% in four scenarios, including parking lot, straight road, urban street and campus road. Meanwhile, in terms of detection speed, the processing cycle of single frame radar echo signal can reach about 0.3 s, which can meet the requirements of practical applications.

关 键 词:FMCW雷达 杂波抑制 三帧差法 运动目标检测 

分 类 号:TN959.1[电子电信—信号与信息处理] TH89[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象