检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jialing WANG Jiazhen HUANG Wenjun CAI
机构地区:[1]School of Mathematics and Statistics,Nanjing University of Information Science and Technology,Jiangsu210044,P.R.China [2]Jiangsu Key Laboratory of NSLSCS,School of Mathematical Sciences,Nanjing Normal University,Jiangsu210023,P.R.China
出 处:《Journal of Mathematical Research with Applications》2023年第1期116-126,共11页数学研究及应用(英文版)
基 金:Support by the National Natural Science Foundation of China(Grants Nos.11801277;11971242).
摘 要:This letter is focused on proposing an arbitrarily high-order energy-preserving method for solving the charged-particle dynamics.After transforming the original Hamiltonian energy functional into a quadratic form by using the invariant energy quadratization method,symplectic Runge-Kutta method is used to construct a novel energy-preserving scheme to solve the Lorentz force system.The new scheme is not only energy-preserving,but also can be arbitrarily highorder.Numerical experiments are conducted to demonstrate the notable superiority of the new method with comparison to the well-known Boris method and another second-order energypreserving method in the literature.
关 键 词:Lorentz force system energy-preserving method invariant energy quadratization method symplectic Runge-Kutta method
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62