基于序贯平差的沉降预测模型高效更新方法  

Efficient Updating Method for Settlement Prediction Model Based on Sequential Adjustment

在线阅读下载全文

作  者:郑一帆 于先文[1] ZHENG Yifan;YU Xianwen(School of Transportation,Southeast University,Nanjing 211189,China)

机构地区:[1]东南大学交通学院,江苏南京211189

出  处:《铁道学报》2023年第1期122-127,共6页Journal of the China Railway Society

基  金:国家自然科学基金(41974030)。

摘  要:沉降预测对于保证工程建筑物的正常使用寿命和安全性具有重要意义,而沉降预测模型更新又是其中的重要环节。针对沉降预测模型传统更新方法效率低、历史数据依赖性强的问题,用序贯平差取代传统最小二乘间接平差,得到一种新的模型更新方法。该方法能够大幅度减小数据的计算量与存储量,显著提升算法效率,并提高模型更新的可靠性。同时,配合该方法的特性,推导出新的相关系数递推算法用于模型评价。利用沪苏通长江公铁大桥的工程沉降数据进行算例验证,对比分析两种方法的更新过程与成果。结果表明:新方法正确高效,具备较好的实用价值,可广泛应用于铁路、公路、桥梁等工程中。Settlement prediction is of great significance to ensure the durability and safety of engineering structures,while the updating of settlement prediction model is an important part of the process.This study aimed at addressing the problems of the traditional method of updating settlement prediction models,principally its low efficiency and heavy dependence on historical data,by introducing a new method that substitutes sequential adjustment for least square indirect adjustment.This new updating method can significantly improve algorithmic efficiency and reliability of the model updating process and dramatically alleviate the load of storing and computing data.In addition,fitting the characteristics of this method,a new correlation coefficient recursive algorithm was derived for model evaluation.The settlement data of Shanghai—Suzhou—Nantong Yangtze Bridge were used for example verification to analyze the updating process and the results of these two methods.The results show that this correct,efficient,and useful method with good practical value can be applied to the construction of railways,highways and bridges.

关 键 词:沉降预测 高效更新方法 序贯平差 预测模型 相关系数 

分 类 号:TU196[建筑科学—建筑理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象