检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:倪伟 蒋占四[1] NI Wei;JIANG Zhansi(School of Mechanical and Electrical Engineering,Guilin University of Electronic Technology,Guilin 541004)
机构地区:[1]桂林电子科技大学机电工程学院,广西桂林541004
出 处:《桂林电子科技大学学报》2022年第6期463-467,共5页Journal of Guilin University of Electronic Technology
基 金:国家自然科学基金(51565008);广西自然科学基金(2019JJB160062);广西科技基地和人才专项(2019AC20266);广西区研究生创新项目(YCSW2020149)。
摘 要:针对滚动轴承故障信号非线性、故障特征种类繁多难以准确分类的问题,提出了一种Self-Weigh与t-SNE相结合的解决方法。先用WPT完成对原始故障信号的处理及特征的提取,然后采用Self-Weigh评估每个特征的敏感程度,获取最优特征;再对这些最优特征通过t-SNE进行降维可视化处理,获取低维敏感特征,并将其作为AP传播聚类的输入,从而实现故障类型100%正确识别。采用机械综合模拟实验平台的轴承数据加以验证,并与采用t-SNE、Self-Weigh+PCA方法进行对比,结果体现了所提方法的优势。In order to solve the problem that the fault signal of rolling bearing is nonlinear and the fault features are various,and it is difficult to classify accurately,a method combining Self-Weight feature selection with t-SNE algorithm is proposed.Firstly,WPT is used to process the original fault signal and extract the features.Then Self-Weight is used to evaluate the sensitivity of each feature to obtain the optimal feature.Then,these optimal features are visualized by t-SNE to obtain low dimensional sensitive features,which are used as the input of affine propagation clustering(AP)to achieve 100%accuracy of fault type identification.The results are verified by the bearing data of the MFS-MG,Compared with t-SNE without feature selection and Self-Weight+PCA,the results show the advantages of the proposed method.
关 键 词:自权重 t分布随机近邻嵌入 滚动轴承 故障诊断 特征提取
分 类 号:TH133.33[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38