检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chunhua Hu Zefeng Shi Hailin Wei Xiangdong Hu Yuning Xie Pingping Li
机构地区:[1]College of Information Science and Technology,Nanjing Forestry University,Nanjing 210037,China [2]Hunan Academy of Forestry,Changsha 410004,China [3]College of Biology and Environment,Nanjing Forestry University,Nanjing 210037,China
出 处:《International Journal of Agricultural and Biological Engineering》2022年第6期189-196,共8页国际农业与生物工程学报(英文)
基 金:funded by the Forestry Science and Technology Innovation Fund Project of Hunan Province(Grant No.XLK202108-4)and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
摘 要:Although the development of the robot picking vision system is widely applied,it is very challenging for fruit detection in orchards with complex light and environment,especially for fruit colors similar to the background.In recent,there are few studies on pecan fruit detection and location based on machine vision.In this study,an accurate and efficient pecan fruit detection method was proposed based on machine vision under natural pecan orchards.In order to solve the illumination problem,a light compensation algorithm was first utilized to process the collected samples,and then an improved Faster Region Convolutional Neural Network(Faster RCNN)with the Feature Pyramid Networks(FPN)was established to train the samples.Finally,the pecan number counting method was introduced to count the number of pecan.A total of 241 pecan images were tested,and comparison experiments were carried out.The mean average precision(mAP)of the proposed detection method was 95.932%,compared with the result without uneven illumination correction(UIC),which was increased by 0.849%,while the mAP of the Single Shot Detector(SSD)+FPN was 92.991%.In addition,the number of clusters was counted using the proposed method with an accuracy rate of 93.539%compared with the actual clusters.The results demonstrate that the proposed network has good robustness for pecan fruit detection in different illumination and various unstructured environments,and the experimental achievement has great potential for robot-picking visual systems.
关 键 词:pecan fruit fruit detection Faster RCNN FPN uneven illumination correction
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170