检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王茂林 郝刚 WANG Mao-Lin;HAO Gang(School of Computer Science and Engineering,Tianjin University of Technology,Tianjin 300010,China)
机构地区:[1]天津理工大学计算机科学与工程学院,天津300010
出 处:《计算机系统应用》2023年第1期296-301,共6页Computer Systems & Applications
摘 要:正确识别语音中包含的情感信息可以大幅提高人机交互的效率.目前,语音情感识别系统主要由语音特征抽取和语音特征分类两步组成.为了提高语音情感识别准确率,选用语谱图而非传统声学特征作为模型输入,采用基于attention机制的CGRU网络提取语谱图中包含的频域信息和时域信息.实验结果表明:在模型中引入注意力机制有利于减少冗余信息的干扰,并且相较于基于LSTM网络的模型,采用GRU网络的模型预测精确度更高,且在训练时收敛更快,与基于LSTM的基线模型相比,基于GRU网络的模型训练时长只有前者的60%.Accurate recognition of speech emotion information can help to greatly improve the efficiency of humancomputer interaction.At present,the speech emotion recognition system mainly consists of two steps:speech feature extraction and speech feature classification.In order to improve the accuracy of speech emotion recognition,the spectrogram is used as the model input instead of traditional acoustic features,and the CGRU network based on the attention mechanism is adopted to extract the frequency domain and time domain information in the spectrogram.The experimental results show that the introduction of the attention mechanism in the model is beneficial to reduce the interference of redundant information,and compared with the model based on the LSTM network,the model using the GRU network can fast converge during training and has higher prediction accuracy.In addition,the training time of the GRU-based model is only 60%of that of the LSTM-based baseline model.
关 键 词:语音情感识别 注意力机制 门控循环单元 语谱图 深度学习
分 类 号:TN912.34[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.175.182