检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Gang CHEN Ilia PONOMARENKO
机构地区:[1]School of Mathematics and Statistics,Central China Normal University,Wuhan 430079,China [2]Steklov Institute of Mathematics at St.Petersburg,Russia [3]Sobolev Institute of Mathematics,Novosibirsk,Russia
出 处:《Frontiers of Mathematics in China》2022年第5期829-852,共24页中国高等学校学术文摘·数学(英文)
基 金:The first author was supported by the National Natural Science Foundation of China(Grant No.11971189).
摘 要:A Cartesian decomposition of a coherent configuration✗is defined as a special set of its parabolics that form a Cartesian decomposition of the underlying set.It turns out that every tensor decomposition of✗comes from a certain Cartesian decomposition.It is proved that if the coherent configuration✗is thick,then there is a unique maximal Cartesian decomposition of✗;i.e.,there is exactly one internal tensor decomposition of✗into indecomposable components.In particular,this implies an analog of the Krull–Schmidt theorem for the thick coherent configurations.A polynomial-time algorithm for finding the maximal Cartesian decomposition of a thick coherent configuration is constructed.
关 键 词:Coherent configuration Cartesian decomposition Krull-Schmidt theorem
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.9.67