低信噪比下非冗余阵列的无网格DOA估计  被引量:2

Gridless DOA estimation for non-redundant array at low SNR

在线阅读下载全文

作  者:王宁 吕晓德[1,2] 李苗苗 WANG Ning;LYU Xiaode;LI Miaomiao(Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China;National Key Laboratory of Microwave Imaging Technology,Beijing 100190,China;School of Electronic,Electrical and Communication Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)

机构地区:[1]中国科学院空天信息创新研究院,北京100094 [2]微波成像技术国家级重点实验室,北京100190 [3]中国科学院大学电子电气与通信工程学院,北京100049

出  处:《系统工程与电子技术》2023年第2期352-359,共8页Systems Engineering and Electronics

摘  要:波达方向(direction of arrival,DOA)是阵列信号处理模型中的非线性参数,当信噪比较低时,其估计值会偏离真实值。为了降低无网格DOA估计方法中该问题的阈值,介绍了一种基于无网格的基于协方差的稀疏迭代估计(sparse iterative covariance-based estimation,SPICE)方法。引入了最大似然求根多重信号分类(maximum likelihood root multiple signal classification,ML-Root-MUSIC)来计算DOA,使用最大似然准则来选择根,可以降低阈值并获得更好的分辨率特性。在原始无网格SPICE的优化问题中加入了负熵项,使得无网格SPICE的均方根误差曲线更接近于Cramer-Rao下界。最后,蒙特卡罗仿真实验验证了所提方法在低信噪比非冗余阵列情况下的优越性。Direction of arrival(DOA)is a nonlinear parameter in the array signal processing model,and its estimation deviates from the true value when the signal-to-noise ratio is low.In order to lower the threshold of this problem in gridless DOA estimation method,a method based on gridless sparse iterative covariance-based estimation(SPICE)is introduced.A maximum likelihood root multiple signal classification(ML-Root-MUSIC)is introduced to calculate DOA,which uses ML criterion to select roots and can lower the threshold and get better resolution characteristic.A negative entropy term is added to the optimization problem in the original gridless SPICE,so that the root mean square error curve of gridless SPICE is closer to Cramer-Rao lower bound in large-snapshot case.Finally,Monte Carlo simulation experiments verify that the proposed method is better than the competing methods for non-redundant arrays at low signal-to-noise ratio.

关 键 词:波达方向估计 非冗余阵列 低信噪比 无网格 

分 类 号:TN911.72[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象