Robust combined modeling of crystalline and amorphous silicon grain boundary conductance by machine learning  

在线阅读下载全文

作  者:Chayaphol Lortaraprasert Junichiro Shiomi 

机构地区:[1]Department of Mechanical Engineering,The University of Tokyo,Tokyo,Japan [2]Institute of Engineering Innovation,The University of Tokyo,Tokyo,Japan

出  处:《npj Computational Materials》2022年第1期2099-2106,共8页计算材料学(英文)

基  金:This work was partially supported by JST-CREST(Grant No.JPMJCR21O2).

摘  要:Knowledge in thermal and electric transport through grain boundary(GB)is crucial for designing nanostructured thermoelectric materials,where the transport greatly depends on GB atomistic structure.In this work,we employ machine learning(ML)techniques to study the relationship between silicon GB structure and its thermal and electric boundary conductance(TBC and EBC)calculated by Green’s function methods.We present a robust ML prediction model of TBC covering crystalline–crystalline and crystalline–amorphous interfaces,using disorder descriptors and atomic density.We also construct high-accuracy ML models for predicting both TBC and EBC and their ratio,using only small data of crystalline GBs.We found that the variations of interatomic angles and distance at GB are the most predictive descriptors for TBC and EBC,respectively.These results demonstrate the robustness of the black-box model and open the way to decouple thermal and electrical conductance,which is a key physical problem with engineering needs.

关 键 词:GRAIN structure. CRYSTALLINE 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象