检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:鲁海笑 武时宇 刘钊[2] LU Hai-xiao;WU Shi-yu;LIU Zhao(College of Civil Engineering,Tongji University,Shanghai 200092 China;College of Civil Engineering,Southeast University,Nanjing Jiangsu 211189 China)
机构地区:[1]同济大学土木工程学院,上海200092 [2]东南大学土木工程学院,江苏南京211189
出 处:《江苏建筑》2022年第6期22-26,共5页Jiangsu Construction
摘 要:通常用于确定吊杆内力的方法有恒载平衡法、柔度矩阵法和最小弯曲应变能法,但这三种方法常用于简支系杆拱桥。对于连续梁拱组合桥,吊杆力设置不合理会使结构产生较大弯矩,造成材料虚耗。文章提出了通过控制梁各跨最大弯矩绝对值相等的多跨梁等弯矩法,以此来确定梁拱组合桥的吊杆力。计算表明,多跨梁等弯矩法确定的吊杆内力使主梁弯矩更均衡,可实现结构内力的合理分配,具有很好的工程应用价值。There are three usual methods to determine the internal force of the hangers: "dead load balance method";"flexibility matrix method" and "minimum bending strain energy method", but these three methods are commonly used in simply supported tied-arch bridges. For continuous beam-arch composite bridges, the improper setting of hanger forces often causes large bending moments, resulting in material waste. In this paper, "multi-span beam moment equalization method" which controls the absolute value of the maximum bending moment of each span to be equal is proposed to determine the hanger forces for beam-arch composite bridges.The calculation results show that the internal force of the hangers determined by the multi-span beam moment equalization method makes the bending moment of the main beam more balanced, which achieves the rational distribution of structural force and has a good engineering application value.
分 类 号:U441[建筑科学—桥梁与隧道工程] U448.22[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.237.153