检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宁欣[1] 刘江宽 李卫军[1] 石园 支金林 南方哲 NING Xin;LIU Jiangkuan;LI Weijun;SHI Yuan;ZHI Jinlin;NAN Fangzhe(Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China;Cognitive Computing Technology Joint Laboratory,WAVE Group,Beijing 102200,China;Shenzhen Wave Kingdom Co.LTD,Shenzhen Guangdong 518102,China;School of Software,Xinjiang University,Urumqi Xinjiang 830091,China)
机构地区:[1]中国科学院半导体研究所,北京100083 [2]威富集团形象认知计算联合实验室,北京102200 [3]深圳市威富世界有限公司,广东深圳518102 [4]新疆大学软件学院,新疆乌鲁木齐830091
出 处:《太赫兹科学与电子信息学报》2023年第1期95-101,共7页Journal of Terahertz Science and Electronic Information Technology
基 金:国家自然科学基金资助项目(61901436)。
摘 要:随着实例分割技术在各种场景中的应用越来越广泛,运行速度和硬件资源占用是该技术在应用中需要考虑的2个重要因素。最近提出的基于图像原型掩码系数的实例分割网络(YOLACT)在运行速度方面做得很好,但是需要设置较大的特征提取网络才能保证分割精确度,这就导致了模型占用的硬件资源较多,同时运行速度也受到了限制。在YOLACT的基础上,提出一种新的模型,对实例分割的特征提取网络进行了优化,先使用基于批量归一化层放缩因子的通道剪枝方法对YOLACT网络进行压缩,然后对压缩后的卷积层和批量归一化层进行融合,最后,在COCO val2017上对本文提出的方法进行了评估。实验结果表明,相比原始的YOLACT网络,该方法的模型文件大小可以减少56.9%,运行速度提升28.6%,运行时显存占用也降低了13.6%,有效地减少了硬件资源占用,并且提升了运行速度。With the application of instance-segmentation in various scenarios,the running speed and the utilization of hardware resources are two important factors to be considered in the application of instance segmentation.Recently,a instance segmentation network named You Only Look At Coefficients(YOLACT)bears a high processing speed.However,YOLACT needs to set a large feature extraction network to ensure the segmentation accuracy,which leads to high resource occupancy and limited running speed.Based on the YOLACT,a new model is proposed,and the feature extraction of network segmentation is optimized.Firstly,a channel pruning method based on batch normalized scale factor is utilized to compress YOLACT network,then the convolution layer and batch normalization layer are fused.Finally,the proposed approach is evaluated on Common Objects in Context(COCO)val2017.The experimental results show that,the model size of the method can be reduced by 56.9%and the running speed can be improved by 28.6%compared with that of the original YOLACT network.This approach can reduce the hardware resource consumption and can improve the running speed.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.20.240.115