检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄思 邱学青 王才威 钟磊 张志鸿 杨顺生 孙世荣 杨东杰[4] 张文礼 HUANG Si;QIU Xue-qing;WANG Cai-wei;ZHONG Lei;ZHANG Zhi-hong;YANG Shun-sheng;SUN Shi-rong;YANG Dong-jie;ZHANG Wen-li(School of Packaging and Materials Engineering,Hunan University of Technology(HUT),Zhuzhou 412007,China;Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory(Rongjiang Laboratory),Jieyang 515200,China;Guangdong Provincial Key Laboratory of Plant Resources Biorefinery,School of Chemical Engineering and Light Industry,Guangdong University of Tech-nology(GDUT),Guangzhou 510006,China;School of Chemistry and Chemical Engineering,South China University of Technology(SCUT),Guangzhou 510641,China;Research Institute of Green Chemical Engineering and Advanced Materials,School of Advanced Manufacturing,Guangdong University of Technology(GDUT)Jieyang,Jieyang 515200,China)
机构地区:[1]湖南工业大学包装与材料工程学院,湖南株洲412007 [2]化学与化学工程广东省实验室揭阳中心(榕江实验室),广东揭阳515200 [3]广东工业大学轻工与化工学院,广东广州510006 [4]华南理工大学化学与化工学院,广东广州510641 [5]广东工业大学先进制造学院绿色化工与先进材料研究院,广东揭阳515200
出 处:《新型炭材料(中英文)》2023年第1期40-72,共33页New Carbon Materials
基 金:国家自然科学基金项目(No.22108044);广东省重点领域研发计划项目(No.2020B1111380002);广州市基础研究与应用基础研究(No.202201010290);广东省植物资源生物炼制重点实验室开放课题项目(No.2021GDKLPRB07).
摘 要:钠离子电池在未来大规模固定式电网储能中的潜在应用引起了人们的广泛关注。随着钠离子电池的商业化发展,利用可持续生物质资源开发高性能炭负极材料已成为制造低成本钠离子电池的一项重要策略。本文综述了以生物质废弃物为原料制备先进炭负极材料用于钠离子电池的最新进展。首先,系统地讨论了炭负极储钠机制的历史观点,以明确其构效关系。其次,介绍了炭材料孔结构设计、杂原子掺杂、晶体结构控制和形貌调控等策略有效地提高生物质基炭负极的储钠性能。最后,从合成方法、微观结构和生产成本的角度,展望了生物质基炭负极材料用于商业化钠离子电池的可能以及未来的研究方向和挑战。Sodium-ion batteries(SIBs)have attracted tremendous attention for large-scale stationary grid energy storage.With the upcoming commercialization of SIBs in the foreseeable future,developing high-performance carbon anodes from sustainable biomass is becoming increasingly important in the preparation of cost-effective SIBs.This review summarizes advanced carbon anodes for SIBs derived from various lignocellulose biomass waste.The history of our understanding of sodium storage mechanisms in carbon anodes is first discussed to clarify their structure-performance relationships.Conventional preparation strategies including pore structure design,heteroatom doping,control of the graphitic structure,and morphology control and their effects on the sodium storage capability of biomass-derived carbon anodes are then discussed.Finally,the practical applications,future research directions and challenges for the use of biomass-derived carbon anodes for SIBs are discussed from the aspects of synthesis methods,microstructure control and production costs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.36