检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王泽 孔韦韦 薛佳伟 平稳 李龙[3,4] WANG Ze;KONG Weiwei;XUE Jiawei;PING Wen;LI Long(Xi’an University of Posts and Telecommunications,Xi’an 710121,China;Shaanxi Provincial Key Laboratory of Network Data Analysis and Intelligent Processing,Xi’an 710121,China;Guilin University of Electronic Technology,Guilin,Guangxi 541004,China;Guangxi Key Laboratory of Trusted Software,Guilin,Guangxi 541004,China)
机构地区:[1]西安邮电大学,西安710121 [2]陕西省网络数据分析与智能处理重点实验室,西安710121 [3]桂林电子科技大学,广西桂林541004 [4]广西可信软件重点实验室,广西桂林541004
出 处:《计算机工程与应用》2023年第3期135-142,共8页Computer Engineering and Applications
基 金:国家自然科学基金(61772396,61902296);广西可信软件重点实验室研究课题(KX202061)。
摘 要:目前大多数方面级情感分类研究都忽略了方面词的建模,以及方面词与上下文之间的交互信息,并且难以体现语法上与方面词有直接联系上下文单词的重要程度。针对上述问题,提出基于方面词交互(aspect word interaction,AWI)和图卷积网络(graph convolutional network,GCN)的方面级情感分类模型(AWI-GCN)。使用双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)分别提取方面词和上下文的特征;采用GCN根据句法依存树进一步提取与方面词有直接语法联系的上下文情感特征;利用注意力机制学习方面词与上下文的交互信息,同时提取上下文中为方面词情感分类做出重要贡献的情感特征。针对3个公开数据集上的仿真实验结果表明,AWI-GCN模型相比当前代表模型取得了更好的情感分类效果。At present, in most studies of aspect-level sentiment classification, the modeling of aspect words and their interactions with context are ignored, and it is difficult to reflect the importance of context words which are directly related to aspect words grammatically. To address the problem above, based on aspect word interaction(AWI)and graph convolutional network(GCN), this paper puts forward a model for the classification—AWI-GCN. Bi-directional long short-term memory(Bi-LSTM)is used to extract aspect words and context features respectively. GCN is adapted to further extract emotional context features directly related to aspect words on the basis of the dependency syntax tree.Attention-Mechanism is applied to learn the interactive information between aspect words and context, and at the same time to extract the emotional features of context that make important contributions to the emotion classification of aspect words. The simulation results on three open data sets show that the AWI-GCN model achieves better sentiment classification performance than the current representative one.
关 键 词:方面级情感分类 方面词交互 图卷积网络 注意力机制 句法依存树
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222