基于语义规则的耕地质量定级单元划分方法改进及综合尺度研究——以青海省湟源县为例  

Study on improving classification methods of cultivated land grading units based on semantic rules——A case of Huangyuan district, Qinghai province

在线阅读下载全文

作  者:贾琛琛 马昊翔 JIA Chenchen;MA Haoxiang(Guangdong Guodi Planning Technology Co.,Ltd.,Guangzhou 510000,China)

机构地区:[1]广东国地规划科技股份有限公司,广州510000

出  处:《自然资源信息化》2022年第6期53-58,共6页Natural Resources Informatization

摘  要:为细化耕地质量差异、综合叠置法产生的细碎单元,需要对定级单元划分方法进行科学改进。本文以青海省湟源县为研究区,以第三次全国国土调查中的耕地图斑为研究对象,综合考虑土地利用方式、土壤性状、地形地貌、气候等因素,经过ArcGIS软件制图综合与分析,设计基于语义规则的定级单元划分模型,探究研究区最优划分评价单元的最小单元面积。改进后的方法可有效解决叠置法产生的细碎单元,实验中的600 m2最小单元面积综合分值最高;与叠置法相比,小于700 m2的单元总数减少了54.98%,单元破碎度降低了4.82%;与耕地图斑相比,内部均方差降低了36.82%,实验减少了细碎单元,有效降低了单元内部的土壤性状差异。In order to refine the quality difference of cultivated land and synthesize the loose units produced by overlay method, it is necessary to improve the classification method of grading units scientifically. Taking Huangyuan district of Qinghai province as a research area and the cultivated land patch in the third national land survey as the research object,this paper considers the land use method, soil characteristics, landform and climate comprehensively and by analyzing the Arc GIS charting to design the grading units classification model based on semantic rules and to study the minimum grading unit area in the research area but with the best classified method. The refined method can effectively solve the loose units produced by overlay method. In the experiment, the minimum unit area of 600 m~2 scores highest. The total number of units under 700 m~2 decreases by 54.98% than overlay methods and the degree of fragmentation of the unit decreases by 4.82%;compared with cultivated land patch, the internal mean square error decreases by 36.82%. The experiment reduces loose units and the soil character differences in the interior unit at the same time.

关 键 词:定级单元 叠置法改进 语义规则 单元综合 耕地 

分 类 号:S159.9[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象