基于贝叶斯的核磁共振T_(2)谱成像方法  被引量:1

Spectral Imaging Method of Nuclear Magnetic Resonance T_(2) Based on Bayesian

在线阅读下载全文

作  者:王琦[1] 杜海龙[1] 高威 刁庶 WANG Qi;DU Hailong;GAO Wei;DIAO Shu(College of Communication Engineering,Jilin University,Changchun 130012,China;Control Technology Institute,Wuxi Institute of Technology,Wuxi 214121,China)

机构地区:[1]吉林大学通信工程学院,长春130012 [2]无锡职业技术学院控制技术学院,江苏无锡214121

出  处:《吉林大学学报(信息科学版)》2022年第6期893-897,共5页Journal of Jilin University(Information Science Edition)

基  金:国家自然科学基金资助项目(42104142);吉林省教育厅科学研究基金资助项目(JJKH20221006KJ);吉林大学实验技术基金资助项目(SYXM2021a002);教育部第二批新工科研究与实践基金资助项目(E-CXCYYR20200918)。

摘  要:为解决T_(2)谱成像精度低,影响检测结果的准确性的问题,对基于贝叶斯的核磁共振T_(2)谱成像方法进行了研究。首先给出了NMR(Nuclear Magnetic Resonance)信号的基本特征,并基于贝叶斯原理,推导了NMR信号的似然函数,构建了T_(2)谱成像框架。其次,采用改进的马尔科夫链蒙特卡洛策略,得到T_(2)谱及其不确定度。最后,通过随机构造服从多峰的混合高斯概率密度函数的T_(2)谱模型,验证了基于贝叶斯的核磁共振T_(2)谱成像方法的有效性。该方法可应用于通信原理综合实验内容,也可用于创新性训练实验。Low-field NMR(Nuclear Magnetic Resonance) technology has been widely used in the detection of physical properties of substances due to its fast and non-destructive characteristics. To solve the problem that the imaging accuracy of T_(2)spectral is low, which affects the accuracy of detection results. Therefore the imaging method of NMR T_(2)spectral based on Bayesian is studied. Firstly, the basic characteristics of NMR signals are showen. Based on the Bayesian principle, the likelihood function of NMR signals is deduced, and the T_(2)spectral imaging framework is constructed. Secondly, the T_(2)spectrum and its uncertainty are obtained by using an improved Markov chain Monte Carlo strategy. Finally, the effectiveness of the Bayesian-based NMR T_(2)spectral imaging method is verified by randomly constructing a T_(2)spectral model that obeys a multimodal mixture Gaussian probability density function. This method can be used as a comprehensive experimental content of communication principle, and can also be used as an innovative training experiment.

关 键 词:核磁共振 T_(2)谱成像 贝叶斯 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象