基于晚点恢复效率最大的高速铁路冗余时间优化模型  被引量:3

Optimization Model of High-Speed Rail Buffer Time Based on Maximum Delays Recovery Efficiency

在线阅读下载全文

作  者:孙雅露 田文华 冯丽萍 文超 SUN Yalu;TIAN Wenhua;FENG Liping;WEN Chao(School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 610031,China;School of Rail Transit,Shandong Jiaotong University,Jinan 250357,China;Science and Technology Division,Hebei Academy of Fine Arits,Shijiazhuang 050700,China)

机构地区:[1]西南交通大学交通运输与物流学院,成都610031 [2]山东交通学院轨道交通学院,济南250357 [3]河北美术学院科研处,石家庄050700

出  处:《综合运输》2022年第12期84-91,共8页China Transportation Review

基  金:中国国家铁路集团有限公司科技研究计划项目(P2020X016);四川省软科学研究计划(2020JDR0129);山东省自然科学基金(ZR2019PG008)。

摘  要:研究冗余时间利用效率,分析冗余时间与晚点恢复之间的关系,对高速铁路列车运行图优化具有重要意义。本文基于武广高速铁路列车运行的实绩,建立基于晚点恢复效率最大的高速铁路冗余时间优化模型。首先分析武广高铁下行计划运行图,提取相关区间、车站冗余时间利用情况,分析各站到发晚点情况,运用岭回归模型,建立基于列车晚点恢复效率最大化的冗余时间布局模型,并用遗传算法求解,优化后晚点恢复效率平均提高了26%。The study of buffer time utilization efficiency and the analysis of the relationship between buffer time and delay recovery are of great significance in the optimization of high-speed railway train operation diagrams.This paper establishes a high-speed railway buffer time optimization model based on the maximum efficiency of delay recovery based on the actual performance of train operation of the Wuhan-Guangzhou high-speed railway.Firstly,we analyze the downstream planning operation diagram of Wu-Guangdong high-speed railway.Then,we extract the relevant intervals and stations’buffer room utilization to analyze the arrival and departure delay situation of each station.Finally,we apply the ridge regression model to establish the buffer time layout model based on maximizing the delay recovery efficiency of trains,and solve the model with a genetic algorithm.The delay recovery efficiency is improved by 26%on average after optimization.

关 键 词:高速铁路 列车运行实绩 冗余时间 晚点恢复 

分 类 号:U292.41[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象