媒体信息、预期冲击与经济周期波动——基于中文财经类报刊数据  被引量:9

Media Information,News Shock and Business Cycle Fluctuations:Based on the Data of Chinese Financial Newspapers

在线阅读下载全文

作  者:郑挺国[1,2] 靳炜 方匡南 林洪伟[1] ZHENG Tingguo;JIN Wei;FANG Kuangnan;LIN Hongwei(School of Economics,Xiamen University;Wang Yanan Institute for Studies in Economics,Xiamen University)

机构地区:[1]厦门大学经济学院统计与数据科学系 [2]厦门大学王亚南经济研究院

出  处:《数量经济技术经济研究》2023年第2期202-220,共19页Journal of Quantitative & Technological Economics

基  金:国家自然科学基金面上项目(71973110);国家自然科学基金重点项目(72033008);中央高校基本科研业务费(20720191072);全国统计科学研究项目重点项目(2022LZ37)和(2022LZ06);国家社科基金重大项目(21&ZD146);西财金融安全协同创新中心培育课题(JRXTP202202)的资助。

摘  要:新闻媒体作为公众信息的主要来源,对公众预期具有不可忽视的作用,进而可能对宏观经济波动产生影响。本文首先使用潜在狄利克雷分配模型,将中文财经类报刊文本数据转化为新闻主题关注度,并依据新闻主题关注度构建新闻指数作为公众预期的测度,然后结合消费、产出等关键宏观经济变量,利用结构VAR模型考察预期冲击和噪声冲击对经济周期波动的影响。研究发现,新闻指数对消费、产出等关键宏观经济变量具有明显的领先关系;从新闻指数中识别的预期冲击会对实际经济变量产生永久性的影响,而噪声冲击的影响会逐渐衰减,最终回到冲击前的水平。本文的研究验证了预期管理在宏观经济调控中的重要性,并为文本数据在宏观经济研究中的应用提供了新视角。The origin of the business cycle is a long-standing question in macroeconomics research.Among many theories,news-driven business cycle theory addresses the importance of public expectation.According to the news-driven business cycle,changes in public expectation can cause co-movement in key macroeconomic variables under the absence of fundamental exogenous shocks.The news-driven business cycle provides theoretical support for policies such as expectation management and expectation guidance.However,how to measure public expectation is still an open question.Previous studies utilized forward-looking variables such as stock market returns or surveybased data to measure public expectation,but these approaches remain controversial.As the main information of the public,news media play a vital role in the formation of public expectation.According to the theory of narrative economics,popular narratives in the news media will cause macroeconomic fluctuations by changing public expectation,which has previously been ignored.The availability of natural language processing techniques enables economists to incorporate textual data in the news and evaluate their role for the business cycle.In this paper,first,the full-text news reports of three most prevalent business-related newspapers in China are collected from 2000 to 2021.By using the latent Dirichlet allocation(LDA)model,unstructured textual data are converted into multivariate time series data.LDA is an unsupervised machine learning method that decomposes the raw word count in the corpus into various topics.Analogous to principal component analysis in macroeconometrics,LDA summarizes the word count via topics.There are two outputs of the LDA model;topic-word distribution and documenttopic distribution.The former can be employed to interpret a topic,and the latter can be viewed as news topic attention as it measures the attention editors allocate to each topic.Second,to combine news topic attention with news-driven business cycle theory,a news index is constructed based o

关 键 词:经济周期波动 媒体报道 文本分析 预期冲击 

分 类 号:F064.1[经济管理—政治经济学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象