基于空间信息技术的公路地质灾害多维多基监测预警方法  被引量:6

Monitoring and Warning Method of Multi-dimension and Multi-base for Highway Geological Disasters based on Spatial Information Technology

在线阅读下载全文

作  者:余绍淮[1] 徐乔 余飞[1] 罗博仁 刘德强 YU Shao-huai;XU Qiao;YU Fei;LUO Bo-ren;LIU De-qiang(CCCC Second Highway Consultants Co.Ltd.,Wuhan 430056,China)

机构地区:[1]中交第二公路勘察设计研究院有限公司,武汉市430056

出  处:《公路》2022年第12期259-266,共8页Highway

基  金:交通运输部公路工程行业标准制修订项目,项目编号JTG-201912、JTG-202056。

摘  要:针对公路交通大范围、多目标地质灾害辨识与监测预警的技术难题,采用一种以现代空间信息技术为核心的公路地质灾害多维多基网络化监测预警方法。以青海、贵州等多个公路工程为依托,利用高分卫星和SAR卫星进行大范围地质灾害的早期辨识与中长期监测,采用北斗定位和物联网技术进行重点地质灾害的远程、实时监测,在此基础上利用机器学习算法,构建基于多源监测信息的地质灾害综合预警模型,实现公路地质灾害的动态监测与实时预警。结果表明,该方法可快速、准确辨识地质灾害隐患,能大范围、高精度监测预警地质灾害,有效提升公路地质灾害监测预警效率。A multi-dimensional and multi-base monitoring and warning method of highway geological disasters based on modern spatial information technology is proposed to solve the technical problems of large-scale and multi-objective geological disaster identification and monitoring and warning. Relying on some highway projects in Qinghai and Guizhou, the high-resolution satellites and SAR satellites are used for identification and medium-term/long-term monitoring of large-scale geological disasters. The Beidou Navigation Satellite System and Internet of Things technology are used for remote and real-time monitoring of key geological disasters. On this basis, the comprehensive geological disasters warning model based on multi-source monitoring data is constructed by machine learning algorithm. The results show that geological hazards could be quickly and accurately identified, the geological disasters could be monitored in a wide range with high precision and warning can be issued, which can effectively improve the efficiency of highway geological disasters monitoring and early warning issuing.

关 键 词:公路地质灾害 监测预警 高分卫星 北斗定位 SAR卫星 

分 类 号:P694[天文地球—地质学] P237

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象