检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李慧芳[1] 徐光浩 黄双喜[2] LI Huifang;XU Guanghao;HUANG Shuangxi(Key Laboratory of Intelligent Control and Decision of Complex Systems,School of Automation,Beijing Institute of Technology,Beijing 100081,China;Department of Automation,Tsinghua University,Beijing 100084,China)
机构地区:[1]北京理工大学自动化学院复杂系统智能控制与决策国家重点实验室,北京100081 [2]清华大学自动化系,北京100084
出 处:《计算机集成制造系统》2023年第1期146-159,共14页Computer Integrated Manufacturing Systems
基 金:国家自然科学基金资助项目(61836001);国家重点研发计划资助项目(2018YFB1003700)。
摘 要:针对数据不平衡分类问题,提出了一种基于主动生成式过采样与深度堆叠网络(DSN)的故障诊断方法。首先,在带有分类器的生成式对抗网络(ACGAN)的训练过程中,将Wasserstein距离作为新目标函数,为生成器提供有效梯度,并根据损失值之比自适应地调整迭代过程中生成器与判别器的训练次数,克服训练不协调所导致的模型收敛困难,以提高ACGAN的训练稳定性,改善生成样本的质量。其次,采用基于委员会查询(QBC)的主动学习算法,并设计多样性评价指标Diversity,对ACGAN生成的高信息熵样本进行二次筛选,以保证所挑选样本的多样性;同时利用筛选出的样本训练判别器,引导生成器生成信息量丰富的少数类样本。最后,在平衡数据集的基础上,训练基于DSN的故障分类模型。通过对比实验验证了所提出方法的有效性。To cope with the class imbalance learning problem, a fault diagnosis method based on active generative over-sampling and Deep Stacking Network(DSN) was proposed. In the training process of an Auxiliary Classifier Generative Adversarial Network(ACGAN), the Wasserstein distance was taken as a new objective function to provide an effective gradient for the generator, and the training times for the generator and discriminator were adaptively adjusted in each iteration to overcome the convergence difficulty caused by their uncoordinated training paces, and thus improve the stability of training ACGAN and the quality of generated samples. A Query By Committee(QBC) based active learning algorithm was used and a Diversity evaluation index was designed to filter the samples that were produced from the AGANN generator and also with high information entropy so as to ensure the diversity of selected samples. At the same time, these filtered samples were utilized to train a discriminator to guide the generator producing the minority samples with rich information. A DSN-based fault classifier was trained from the balanced dataset. A set of comparative experiments were conducted to verify the effectiveness of the proposed method.
分 类 号:TP206[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117