检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Antonio Corbo ESPOSITO Gianpaolo PISCITELLI
出 处:《Frontiers of Mathematics in China》2022年第4期591-623,共33页中国高等学校学术文摘·数学(英文)
基 金:supported by the MiUR-Dipartimenti di Eccellenza 2018–2022 grant“Sistemi distribuiti intelligenti”of Dipartimento di Ingegneria Elettrica e dell’Informazione“M.Scarano”,by the MiSE-FSC 2014–2020 grant“SUMMa:Smart Urban Mobility Management”,and by GNAMPA of INdAM.The authors would also like to thank D.A.La Manna and V.Mottola for the helpful conversations during the starting stage of this work.
摘 要:The data clustering problem consists in dividing a data set into prescribed groups of homogeneous data.This is an NP-hard problem that can be relaxed in the spectral graph theory,where the optimal cuts of a graph are related to the eigenvalues of graph 1-Laplacian.In this paper,we first give new notations to describe the paths,among critical eigenvectors of the graph 1-Laplacian,realizing sets with prescribed genus.We introduce the pseudo-orthogonality to characterize m_(3)(G),a special eigenvalue for the graph 1-Laplacian.Furthermore,we use it to give an upper bound for the third graph Cheeger constant h_(3)(G),that is,h_(3)(G)≤m_(3)(G).This is a first step for proving that the k-th Cheeger constant is the minimum of the 1-Laplacian Raylegh quotient among vectors that are pseudo-orthogonal to the vectors realizing the previous k−1 Cheeger constants.Eventually,we apply these results to give a method and a numerical algorithm to compute m3(G),based on a generalized inverse power method.
关 键 词:Graph 1-Laplacian graph Cheeger constants pseudo-orthogonality critical values data clustering
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.22.202