检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡洁 练朝春 李艳婷[2] 雷月霆 岳子桐 HU Jie;LIAN Chaochun;LI Yanting;LEI Yueting;YUE Zitong(Shanghai GM Wuling Automobile Co.,Ltd.,Liuzhou,Guangxi 545000,China;School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
机构地区:[1]上海通用五菱汽车股份有限公司,广西柳州545000 [2]上海交通大学机械与动力工程学院,上海200240
出 处:《工业工程与管理》2022年第6期192-200,共9页Industrial Engineering and Management
基 金:国家自然科学基金面上项目(72072114)。
摘 要:文本数据作为典型的非结构化数据,存在于汽车企业的全业务流程各个环节中。本文以上汽通用五菱公司“用户之声”数据集为背景进行案例研究,首先将文本数据进行预处理并构建汽车领域专业词典,然后将利用词向量训练模型获得的语义特征输入云算法池中的机器学习模型进行预测和分类,最终服务于应用层业务环节的各个场景和任务目标。本文一方面提炼出了基于文本数据挖掘的分析架构,另一方面提升了客户投诉反馈工单的数据质量,并对上海通用五菱公司文本数据体系建设和流程环节质量提升有积极的促进作用。As typical unstructured data,text data exists in all aspects of the whole business process of automobile enterprises. The case study was carried out against the background of the above GM Wuling "Voice of Customer" dataset. First,the text data was preprocessed and a professional dictionary in the automotive field was built. Then,the semantic features obtained from the word vector training model were input into the machine learning models in the algorithm pool for prediction and classification,and ultimately served the application scenarios. On the one hand,this paper proposed an automatic label algorithm of text data fed back by car enterprises′ customers. On the other hand,it improved the data quality of customer complaints and feedback,which has a positive role in promoting the construction of Wuling text data system and the quality improvement.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28