电子堆积工程调控二硒化镍纳米片助力具有快速动力学的钠离子电池  被引量:2

Iron doping of NiSe_(2)nanosheets to accelerate reaction kinetics in sodiumion half/full batteries

在线阅读下载全文

作  者:刘静 谢娟 董慧龙 魏怀鑫 孙陈诚 杨骏 耿洪波 Jing Liu;Juan Xie;Huilong Dong;Huaixin Wei;Chencheng Sun;Jun Yang;Hongbo Geng(School of Electronic and Information Engineering,Changshu Institute of Technology,Changshu 215500,China;School of Material Science&Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China;School of Materials Engineering,Changshu Institute of Technology,Changshu 215500,China;School of Chemistry and Life Sciences,Suzhou University of Science and Technology,Suzhou 215009,China;School of Materials Science and Engineering,Jiangsu University,Zhenjiang 212013,China)

机构地区:[1]School of Electronic and Information Engineering,Changshu Institute of Technology,Changshu 215500,China [2]School of Material Science&Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China [3]School of Materials Engineering,Changshu Institute of Technology,Changshu 215500,China [4]School of Chemistry and Life Sciences,Suzhou University of Science and Technology,Suzhou 215009,China [5]School of Materials Science and Engineering,Jiangsu University,Zhenjiang 212013,China

出  处:《Science China Materials》2023年第1期69-78,共10页中国科学(材料科学(英文版)

基  金:financially supported by the National Natural Science Foundation of China(51801030);the Science and Technology Development Plan of Suzhou(ZXL2021176);China Postdoctoral Science Foundation(2022M711686);Jiangsu Provincial Funds for the Young Scholars(BK20190978)。

摘  要:近年来,钠离子电池电极材料引起了研究者们极大的兴趣.过渡金属硒化物具有高钠离子存储容量,是一种具有前景的钠离子电池负极材料.然而,该类材料较低的电导率以及钠离子脱嵌过程中巨大的体积膨胀,导致了其较差的钠离子电池倍率性能和循环寿命.本工作采用二维的双金属有机框架材料为模板,设计制造了多孔铁掺杂NiSe_(2)纳米片材料(Fe-NiSe_(2)@C NSs),该结构具有充分暴露的活性位点,增强的电导率,丰富的空隙和短电子传输路径,易于适应钠离子脱嵌带来的体积膨胀应力,并具有快速的电荷转移动力学.作为钠离子电池负极材料时,Fe-NiSe_(2)@C NSs表现出高比容量(5 A g^(-1)电流密度下为302 mA h g^(-1))和优异的循环稳定性(5 A g^(-1)的电流密度下循环1000圈容量保持率为99%).此外,该材料在与Na3V2(PO4)2O2F正极材料组成的钠离子全电池中也表现出了高能量密度(107 W h kg^(-1)).大量非原位表征和理论计算进一步验证了Fe掺杂使电子密度增大,对于提升Fe-NiSe_(2)@C NSs的钠离子电池综合性能具有重要意义.本研究为制备高性能钠离子电池电极材料提供了新思路.Transition metal selenides are important functional materials owing to their large sodium storage capacity.When used as the anode material of sodium-ion batteries(SIBs),the selenides undergo large volume changes during the(de)embedding process,resulting in electrode pulverization followed by rapid capacity decay.The poor conductivity of metal selenides further limits their rate capacity.In this work,Fe-doped NiSe_(2)@C(Fe-NiSe_(2)@C)nanosheets(NSs)with a porous structure were prepared through two-dimensional binary metal-organic framework templating and subsequent in situ selenization.The NSs exhibited an enhanced electronic transportation structure with a hierarchical porous architecture and fully exposed electrochemically active sites.Moreover,compared with NiSe_(2),the Fe-NiSe_(2)@C NSs exhibited higher capacity(406 m A h g^(-1)at 1 A g^(-1)after 100 cycles),better cycle stability(99%capacity retention after 1000cycles),and higher rate performance,attributed to the optimized stable porous structure and improved Na+mobility.Furthermore,a high energy density of 107 W h kg^(-1)in sodium-ion full batteries was achieved.The storage mechanism of Na+in Fe-NiSe_(2)@C NSs was confirmed through theoretical calculations and a series of ex-situ characterizations.This study provides a reasonable design for improving metal selenides in SIBs.

关 键 词:钠离子电池 循环寿命 正极材料 膨胀应力 金属硒化物 高能量密度 金属有机框架材料 存储容量 

分 类 号:TM912[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象