基于深度学习的网络入侵检测系统  被引量:6

在线阅读下载全文

作  者:傅周超 刘建华 

机构地区:[1]绍兴文理学院,浙江000000

出  处:《网络安全技术与应用》2023年第1期4-7,共4页Network Security Technology & Application

摘  要:入侵检测系统,是一种可以监控网络运输,在发现异常现象时,能够发出警报或者主动响应的一种设备。但传统的机器学习算法以及一些简单的深度学习算法,于是就会出现准确率不够高或者训练速度过慢的问题,因此如何提高入侵检测系统性能成为一个亟待解决的关键问题。随着计算机计算能力的提升,入侵检测技术已经发展到智能分析阶段。在这种情况下,本文提出了一种,采用长短期记忆神经网络记忆模型的LSTM算法进行优化,组合LightGBM算法对入侵行为样本进行采样,减少了内存消耗和数据计算量的LightGBM-LSTM的组合模型,大大提高了效率。与传统算法相比,LightGBM-LSTM入侵检测系统的检测精度更高,训练时间更短。

关 键 词:入侵检测系统 决策树算法 单边梯度采样 互斥特征捆绑 长短期记忆神经网络 

分 类 号:TP393.08[自动化与计算机技术—计算机应用技术] TP18[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象