基于TLS-ESPRIT的改进空间平滑相干信号DOA估计算法  被引量:3

Improved spatial smoothing DOA estimation algorithm for coherent signals based on TLS-ESPRIT

在线阅读下载全文

作  者:胡爽 黄鹏 蒋凯 李良荣 HU Shuang;HUANG Peng;JIANG Kai;LI Liangrong(College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China;College of Electronic information engineering,Beihang University,Beijing 100000,China)

机构地区:[1]贵州大学大数据与信息工程学院,贵阳550025 [2]北京航空航天大学电子信息工程学院,北京100000

出  处:《智能计算机与应用》2023年第1期208-212,F0003,共6页Intelligent Computer and Applications

基  金:国家自然科学基金(61361012)。

摘  要:由于噪声的存在,现有的相干信号波达方向估计算法在低信噪比、小快拍数和小信号间隔条件下,性能下降严重。针对这一问题,本文提出一种基于总体最小二乘法——旋转不变子空间(Total Least Squares-Estimating Signal Parameter via Rotational Invariance Techniques,TLS-ESPRIT)算法的改进前后向空间平滑方法,对相干信源波达方向(Direction of Arrival,DOA)进行估计。该方法利用了信号的强相关性和噪声的弱相关性,通过时空相关协方差矩阵重构平滑后的阵列协方差矩阵,并将得到的新协方差矩阵应用于TLS-ESPRIT算法进行DOA估计。通过与其他几种传统的解相干算法建模仿真对比,该算法在相干源之间的DOA距离较近、信噪比(Signal Noise Ratio,SNR)较低和快拍数较小的情况下可以更好地估计波达方向,且具备更高的分辨率和精度。Due to the existence of noise,the performance of the existing algorithms for estimating the direction of arrival of coherent signals is seriously degraded under the conditions of low signal-to-noise ratio,close signal angle interval and small number of snapshots.To solve this problem,an improved spatial smoothing DOA estimation algorithm for coherent signal based on TLS-ESPRIT is proposed.This method utilizes the strong correlation of the signal and the weak correlation of the noise.First,the smoothed array covariance matrix is reconstructed through the spatiotemporal correlation covariance matrix,and the obtained new covariance matrix is applied to the TLS-ESPRIT algorithm for DOA estimation.Compared with several other traditional decoherence algorithms in modeling and simulation,this algorithm can better estimate DOA with higher resolution and accuracy when the DOA distance between coherent sources is close,the signal noise ratio is low and the number of snapshots is small.

关 键 词:空间平滑 DOA估计 相干信源 TLS-ESPRIT算法 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象