检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHANG Dong ZHANG Haochun WANG Qi SUN Wenbo
机构地区:[1]School of Energy Science and Engineering,Harbin Institute of Technology,Harbin 150001,China
出 处:《Journal of Thermal Science》2023年第1期223-236,共14页热科学学报(英文版)
基 金:supported by the National Key R&D Program of China(2020YFB1901900)。
摘 要:Investigations on entropy generation and thermal irreversibility analysis are conducted for liquid lead-bismuth eutectic(LBE)in an annular pipe.To find better performance in convective heat transfer,the computational fluid dynamics(CFD)code based on the finite volume method(FVM)is adopted to solve this problem.The elevated temperature LBE flows in the annular pipe,and four types of heat flux,including constant,linear increase and decrease,and parabolic distributions are imposed at the inside wall of the annular pipe.The investigations are conducted for the specific average heat input of 200 kW/m^(2),and the different Peclet number Pe is set from 1200 to 3200.The SST k-ωturbulent model and Cheng-Tak Prt model are adopted.The mesh independence validation and models verification are also conducted and the maximum Nu error is 5.43%compared with previous experimental correlations.The results from the local and system scales,respectively,including volumetric dimensionless entropy generation,Ns,Be,and Ep,are discussed.The results indicate that the viscous friction and heat transfer caused by entropy generation can be found in the viscous sub-layer and buffer layer respectively.Heat transfer is the primary factor that leads to irreversible losses.Besides,the results show that the best thermodynamic performance occurs under parabolic distributed heat flux in the research scope.
关 键 词:liquid lead-bismuth eutectic entropy generation analysis annular pipe CFD
分 类 号:TK124[动力工程及工程热物理—工程热物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7