基于多源信息的多参数电磁层析成像方法研究  被引量:1

Multi-parameter Electromagnetic Tomography Based on Multi-source Information

在线阅读下载全文

作  者:张文彪[1] 郑晓媛 ZHANG WEN-biao;ZHENG Xiao-yuan(School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China)

机构地区:[1]华北电力大学控制与计算机工程学院,北京102206

出  处:《计量学报》2023年第1期88-94,共7页Acta Metrologica Sinica

基  金:北京市自然科学基金(3202028);中央高校基本科研业务费专项资金项目(2020MS015)。

摘  要:电磁层析成像(EMT)是电学层析成像技术中的研究热点,但现有EMT方法主要通过单一检测信号对电导率或磁导率分布单独成像。提出了一种基于多源信息的多参数EMT方法。仿真实验结果表明,基于磁感应强度和互感信息的EMT可以分别实现电导率和磁导率分布成像。通过计算重建图像的均方根误差和相关系数,发现线圈和磁阻传感器个数从8个增加到12个时,重建图像的质量有所提高。利用阈值分割和RGB模型,实现电导率和磁导率分布的融合成像。利用融合图像的互补特性,可以改善重建图像质量,并实现了气-液-固三相流型分布的可视化,证明了基于多源信息的多参数EMT方法的可行性。Electromagnetic tomography technology(EMT)has become the hot topic in the field of industrial process tomography.However,the existing EMT uses the single detection signal to visualize the distributions of conductivity or permeability separately.A multi-parameter EMT method based on multi-source information is presented.As shown in simulation results,conductivity and permeability distribution imaging is realized by using the information of magnetic flux intensity and mutual inductance respectively.By calculating the root mean square error and the correlation coefficient of the reconstructed image,it is found that the quality of the reconstructed image is improved when the number of coils and magneto resistive sensors increases from 8 to 12.Through the threshold segmentation and RGB model,the image fusion of conductivity and permeability distributions is realized.By using the complementary characteristics of fused images,the quality of reconstructed images can be improved and the flow pattern ofgas-iquid-solid three-phase flow can be visualized,which proves the feasibility of multi-parameter EMT method based on multi-source information.

关 键 词:计量学 多相流 电磁层析成像 电导率 磁导率 多源信息 

分 类 号:TB937[一般工业技术—计量学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象