检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:奇格奇 刘思劲 何一康 王猛 黄爱玲[1] Qi Geqi;Liu Sijin;He Yikang;Wang Meng;Huang Ailing(School of Traffic and Transportation,Beijing Jiaotong University,Beijing 100044,China;Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,Beijing Jiaotong University,Beijing 100044,China;Beijing Research Center of Urban Traffic Information Sensing and Service Technologies,Beijing Jiaotong University,Beijing 100044,China)
机构地区:[1]北京交通大学交通运输学院,北京100044 [2]北京交通大学综合交通运输大数据应用技术交通运输行业重点实验室,北京100044 [3]北京交通大学北京市城市交通信息智能感知与服务工程技术研究中心,北京100044
出 处:《系统仿真学报》2022年第12期2522-2534,共13页Journal of System Simulation
基 金:国家重点研发计划(2018YFB1601200);国家自然科学基金(71621001)。
摘 要:传统的路侧被动限速方式对于特定的惩处区域以外缺少管控,间接导致车辆行为在时空上的不一致性甚至突变,影响了交通的通行效率与安全性。从车侧主动限速方式入手,提出主动限速效用评价与推荐方法,结合道路线形、交通流量、车型比例,开展多情景主动、被动限速交通仿真,利用安全间接分析模型及交通流运行状态,从安全与效率2个层面提取效用评价指标及其权重,采用集成学习方法进行预测分析。结果显示:主动限速方式相较于被动限速方式更有利于提高安全性和调节效率,而在主动限速方面,GBDT(gradient boosting decision tree)回归模型的预测稳定性和准确率更高(R2=0.984)。Outside the specific punishment area, the traditional roadside passive speed limit mode lacks traffic management, and thus which indirectly leads to the inconsistency or even sudden change of vehicle behaviors in time and space, thereby affects the traffic efficiency and safety. Focusing on the proactive speed limit mode at vehicle side, a utility evaluation and recommendation method is proposed,which carries out the multi-scenario traffic simulation for varied proactive and passive speed limit considering road line types, traffic flow and vehicle type proportion. From the two perspectives of safety and efficiency, the utility evaluation indicators and weights are extracted through surrogate safety assessment model and traffic flow operation status, and the integrated learning method is used in further prediction and analysis. The results show that the proactive speed limiting mode can improve the safety and adjusting efficiency. In proactive speed limit, the prediction stability and accuracy of GBDT(gradient boosting decision tree) regression model are higher(R~2=0.984).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229