大数据平台下农科教协同创新人才培养模式探索  被引量:1

Exploration on the Collaborative Innovation Talent Training Model of Agriculture,Science and Education under the Platform of Big Data

在线阅读下载全文

作  者:郑甲成[1] 舒英杰[1] 胡能兵[1] 程昕昕[1] 许峰[1] 詹秋文[1] 刘婷[1] ZHENG Jia-cheng;SHU Ying-jie;HU Neng-bing(Anhui Science and Technology University,Fengyang,Anhui 233100)

机构地区:[1]安徽科技学院,安徽凤阳233100

出  处:《安徽农业科学》2023年第2期280-282,共3页Journal of Anhui Agricultural Sciences

基  金:安徽科技学院教育教学改革研究重点项目(X202013,Xj2022166);安徽省重点教研项目(2020jyxm1935)。

摘  要:随着全球网络云平台的快速发展,智慧农业和数字农业的大数据时代应运而生。在新冠肺炎疫情时期,高校人才培养实践环节受到严重影响。结合产教融合、校企合作的人才培养经验,开展基于大数据平台的农科教协同创新人才培养模式探索,有助于提升农科类专业人才培养质量和层次。通过调研国内9个地区的协同创新人才培养现状,分析了农科教协同创新人才培养过程中存在的问题,总结了国内高校农科教协同创新人才培养4种常见模式,构建了以课程体系、实践体系、管理体系、评价体系、修复体系为主要内容的农科教协同创新人才培养新路径,旨在为地方应用型高校提供“一站式”人才培养模式,培养复合型人才,助力乡村振兴。With the rapid development of global network cloud platform,the big data era of intelligent and digital agriculture has emerged.At the current COVID period,the talent training practice has been seriously affected in colleges campus.Combined with the experience of production-education integration and university-enterprise cooperation,the exploration on the collaborative innovation talent training mode of agriculture,science and education based on the big data platform is helpful to improve the cultivation quality and level of agricultural professionals.Based on the investigation on the current situations of collaborative innovation talents’training in nine regions of China,we summarized four common modes of collaborative innovation talent training of agriculture,science and education,and constructed a new pathway of collaborative innovation talent training of agriculture,science and education with curriculum system,practice system,management system,evaluation system and repair system as main contents,so as to provide a“one-station”talent training model for local application-oriented universities,and cultivate the inter-disciplinary talent,and promote the rural revitalization.

关 键 词:大数据 协同创新 农科教 人才培养 

分 类 号:S-01[农业科学] G642[文化科学—高等教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象