检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:兰博洋 祁婉欣 李东[1,2] 韩凤兰 LAN Boyang;QI Wanxin;LI Dong;HAN Fenglan(School of Material Science and Engineering,North Minzu University,Yinchuan 750021,China;International Scientific&Technological Cooperation Base of Industrial Waste Recycling and Advanced Materials,Yinchuan 750021,China)
机构地区:[1]北方民族大学材料科学与工程学院,银川750021 [2]工业废弃物循环利用及先进材料“国际合作基地”,银川750021
出 处:《人工晶体学报》2023年第1期139-148,共10页Journal of Synthetic Crystals
基 金:宁夏自然科学基金(2021AAC03170);北方民族大学研究生创新项目(YCX22147);宁夏自治区重点研发项目(2021BEG01003)。
摘 要:以硫代硫酸钠·五水合物(Na_(2)S_(2)O_(3)·5H_(2)O)、硝酸铋·五水合物(BiN_(3)O_(9)·5H_(2)O)为硫源和铋源,尿素(CON2H4)为结构导向剂,制备了纳米棒状结构的硫化铋(Bi_(2)S_(3)),使其原位生长在MIL-125(Ti)的笼状结构表面。PEC性能测试显示,在0.5 mol·L^(-1)的硫酸钠电解液(pH=6.0)中,Bi_(2)S_(3)/MIL-125(Ti)_(0.07)(MIL-125(Ti)加入量为0.07 g)的复合材料表现出最高的光电性能。光电性能的显著增强主要取决于Bi_(2)S_(3)/MIL-125复合材料的带隙重整效应,对紫外光以及可见光的吸收能力显著提高。但由于Bi_(2)S_(3)/MIL-125光电极与电解液界面之间的电子转移缓慢,为了改善Bi_(2)S_(3)/MIL-125光电极的界面电荷转移动力学性能,利用热还原法引入Ag NPs对Bi_(2)S_(3)/MIL-125光电极进行修饰,制备出的Ag-Bi_(2)S_(3)/MIL-125光电极加快了界面间的电子转移。在-0.5~-0.8 V(versus Ag/AgCl),Bi_(2)S_(3)/MIL-125(Ti)_(0.07)的最大饱和光电流(-0.90 mA·cm^(-2))是未修饰的Bi_(2)S_(3)(-0.61 mA·cm^(-2))的1.5倍;Ag-Bi_(2)S_(3)/MIL-125(Ti)_(0.07)的最大饱和光电流(-1.87 mA·cm^(-2))是未修饰的Bi_(2)S_(3)(-0.61 mA·cm^(-2))的3.1倍。Using sodium thiosulfate pentahydrate(Na_(2)S_(2)O_(3)·5H_(2)O),bismuth nitrate pentahydrate(BiN_(3)O_(9)·5H_(2)O)as sulfur source and bismuth source,and urea(CON2H4)as structure guide agent,bismuth sulfide(Bi_(2)S_(3))with nanorod structure was prepared.It was grown in situ on the cage-like surface of MIL-125(Ti).PEC performance test shows that in 0.5 mol·L^(-1)sodium sulfate electrolyte(pH=6.0),Bi_(2)S_(3)/MIL-125(Ti)_(0.07)(the addition amount of MIL-125(Ti)is 0.07 g)composite has the highest photoelectric property.The significant enhancement of photoelectric property mainly depends on the bandgap reforming effect of Bi_(2)S_(3)/MIL-125 composite,which significantly improves the absorption capacity of ultraviolet light and visible light.However,due to the slow electron transfer between Bi_(2)S_(3)/MIL-125 photoelectrode and electrolyte interface,in order to improve the interface charge transfer kinetic performance of Bi_(2)S_(3)/MIL-125 photoelectrode,Ag NPs was introduced by thermal reduction method to modify the Bi_(2)S_(3)/MIL-125 photoelectrode.The Ag-Bi_(2)S_(3)/MIL-125 photoelectrode was prepared to accelerate the electron transfer between interfaces.In the range from-0.5 V to-0.8 V(versus Ag/AgCl),maximum saturation photocurrent of Bi_(2)S_(3)/MIL-125(Ti)_(0.07)(-0.90 mA·cm^(-2))is about 1.5 times of unmodified Bi_(2)S_(3)(-0.61 mA·cm^(-2)),and maximum saturation photocurrent of Ag-Bi_(2)S_(3)/MIL-125(Ti)_(0.07)(-1.87 mA·cm^(-2))is about 3.1 times of unmodified Bi_(2)S_(3)(-0.61 mA·cm^(-2)).
关 键 词:MIL-125(Ti) Bi_(2)S_(3)纳米棒 溶剂热法 异质结 光电性能 光电极
分 类 号:TB332[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3