机构地区:[1]南方医科大学生物医学工程学院,广东广州510515
出 处:《南方医科大学学报》2023年第1期17-28,共12页Journal of Southern Medical University
基 金:国家自然科学基金(61771233)。
摘 要:目的提出一种半监督癫痫发作预测模型(ST-WGAN-GP-Bi-LSTM预测模型),从脑电(EEG)信号的时频分析、无监督特征模型稳定性以及后端分类器设计三个方面提升发作预测性能。方法对癫痫EEG信号进行斯托克韦尔变换(ST变换)得到时频输入,通过自适应调节分辨率和保留绝对相位,定位癫痫EEG信号的时频成分;当生成数据分布和真实EEG数据分布无重叠时,为了避免JS散度均为常数而导致特征学习失效的问题,采用Wasserstein生成对抗网络作为特征学习模型,以EM距离结合梯度惩罚策略(WGAN-GP)引导的代价函数,约束模型的无监督训练过程,进而生成高阶特征提取器;构建基于双向长短时记忆网络(Bi-LSTM)的时序预测模型,在获取高阶EEG时频特征间时序相关性基础上提升癫痫分类(预测)性能。利用公开数据集CHB-MIT头皮脑电数据集对本文提出的ST-WGAN-GP-Bi-LSTM预测模型进行评估。结果本文的ST-WGAN-GP-BiLSTM预测模型在AUC、灵敏度和特异性指标上分别达到90.40%,83.62%和86.69%。与现有半监督方法相比,将原有的性能指标分别提升17.77%,15.41%和53.66%,并与基于CNN的有监督预测模型性能持平。结论本方法有效地改善半监督深度学习模型预测性能,在癫痫发作预测中发挥无监督特征提取的优化作用。Objective To propose a semi-supervised epileptic seizure prediction model(ST-WGAN-GP-Bi-LSTM)to enhance the prediction performance by improving time-frequency analysis of electroencephalogram(EEG)signals,enhancing the stability of the unsupervised feature learning model and improving the design of back-end classifier.Methods Stockwell transform(ST)of the epileptic EEG signals was performed to locate the time-frequency information by adaptive adjustment of the resolution and retaining the absolute phase to obtain the time-frequency inputs.When there was no overlap between the generated data distribution and the real EEG data distribution,to avoid failure of feature learning due to a constant JS divergence,Wasserstein GAN was used as a feature learning model,and the cost function based on EM distance and gradient penalty strategy was adopted to constrain the unsupervised training process to allow the generation of a high-order feature extractor.A temporal prediction model was finally constructed based on a bi-directional long short term memory network(BiLSTM),and the classification performance was improved by obtaining the temporal correlation between high-order timefrequency features.The CHB-MIT scalp EEG dataset was used to validate the proposed patient-specific seizure prediction method.Results The AUC,sensitivity,and specificity of the proposed method reached 90.40%,83.62%,and 86.69%,respectively.Compared with the existing semi-supervised methods,the propose method improved the original performance by 17.77%,15.41%,and 53.66%.The performance of this method was comparable to that of a supervised prediction model based on CNN.Conclusion The utilization of ST,WGAN-GP,and Bi-LSTM effectively improves the prediction performance of the semi-supervised deep learning model,which can be used for optimization of unsupervised feature extraction in epileptic seizure prediction.
关 键 词:癫痫发作预测 头皮脑电信号 斯托克韦尔变换 生成对抗网络 双向长短期记忆网络
分 类 号:TN911.7[电子电信—通信与信息系统] TP181[电子电信—信息与通信工程] R742.1[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...