基于改进YOLO v5s算法的光伏组件故障检测  被引量:20

Photovoltaic Module Fault Detection Based on Improved YOLOv5s Algorithm

在线阅读下载全文

作  者:孙建波 王丽杰[1,2] 麻吉辉 高玮[1,2] SUN Jianbo;WANG Lijie;MA Jihui;GAO Wei(School of Measurement and Control Technology and Communication Engineering,Harbin University of Science and Technology,Harbin 150080,China;Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application,Harbin Univesity of Science and Technology,Harbin 150080,China)

机构地区:[1]哈尔滨理工大学测控技术与通信工程学院,黑龙江哈尔滨150080 [2]哈尔滨理工大学黑龙江省激光光谱技术及应用重点实验室,黑龙江哈尔滨150080

出  处:《红外技术》2023年第2期202-208,共7页Infrared Technology

基  金:国家自然科学基金项目(61975047)。

摘  要:针对无人机在光伏组件巡检任务中红外故障图像识别准确率低、检测速度慢的问题,提出一种特征增强的YOLO v5s故障检测算法。首先对损失函数进行优化,将原有的回归损失计算方法由GIOU(generalized intersection over union)改为功能更加强大的EIOU(efficient intersection over union)损失函数,并自适应调节置信度损失平衡系数,提升模型训练效果;随后,在每个检测层前分别添加InRe特征增强模块,通过丰富特征表达增强目标特征提取能力。最后,用创建的红外光伏数据集进行对比验证。实验结果表明:本文方法均值平均精度(mean average precision,mAP)为92.76%,检测速度(frame per second,FPS)达到42.37 FPS,其中热斑、组件脱落两种故障类型平均精度分别为94.85%、90.67%,完全能够满足无人机自动巡检的需求。Infrared fault images have the limitations of a low recognition accuracy and low detection rate in a PV module inspection task using a UAV.To address these issues,a feature enhanced YOLO v5s fault detection algorithm is proposed.First,the loss function is optimized,the original regression loss calculation method is changed from GIOU to EIOU,and the confidence loss balance coefficient is adjusted adaptively to improve the model training.The InRe feature enhancement module is then added before each detection layer to enhance the ability of the target feature extraction by enriching the feature expression.Finally,comparative experiments are conducted using the infrared photovoltaic dataset created in this study.The experimental results show that the detection mAP of our method is 92.76%,whereas the detection speed is 42.37 FPS.The mean average precisions of the hot spot and component falling off were 94.85%and 90.67%,respectively,which can fully meet the requirements of the automatic inspection of the UAV.

关 键 词:故障检测 YOLO v5s EIOU 特征增强模块 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象