Some mathematical aspects of Anderson localization:boundary effect,multimodality,and bifurcation  

在线阅读下载全文

作  者:Chen Jia Ziqi Liu Zhimin Zhang 

机构地区:[1]Applied and Computational Mathematics Division,Beijing Computational Science Research Center,Beijing 100193,China [2]Department of Mathematical Sciences,Tsinghua University,Beijing 100084,China [3]Department of Mathematics,Wayne State University,Detroit,Michigan 48202,United States of America

出  处:《Communications in Theoretical Physics》2022年第11期45-64,共20页理论物理通讯(英文版)

基  金:the support from National Natural Science Foundation of China with grants No.11871092,No.12131005;NSAF U1930402。

摘  要:Anderson localization is a famous wave phenomenon that describes the absence of diffusion of waves in a disordered medium.Here we generalize the landscape theory of Anderson localization to general elliptic operators and complex boundary conditions using a probabilistic approach,and further investigate some mathematical aspects of Anderson localization that are rarely discussed before.First,we observe that under the Neumann boundary condition,the low energy quantum states are localized on the boundary of the domain with high probability.We provide a detailed explanation of this phenomenon using the concept of extended subregions and obtain an analytical expression of this probability in the one-dimensional case.Second,we find that the quantum states may be localized in multiple different subregions with high probability in the one-dimensional case and we derive an explicit expression of this probability for various boundary conditions.Finally,we examine a bifurcation phenomenon of the localization subregion as the strength of disorder varies.The critical threshold of bifurcation is analytically computed based on a toy model and the dependence of the critical threshold on model parameters is analyzed.

关 键 词:landscape spectrum EIGENVALUE EIGENMODE EIGENFUNCTION elliptic operator Schr?dinger operator CONFINEMENT 

分 类 号:O411[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象