检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王智[1] 石章松[1] 吴鹏飞[1] 吴中红 祁江鑫 WANG Zhi;SHI Zhang-song;WU Peng-fei;WU Zhong-hong;QI Jiang-xin(College of Weaponry Engineering,Naval Univ.of Engineering,Wuhan 430033,China)
出 处:《海军工程大学学报》2022年第6期35-40,共6页Journal of Naval University of Engineering
基 金:国家自然科学基金资助项目(61773395)。
摘 要:为解决弹着点水柱目标准确且快速检测的问题,充分平衡检测精度和实时性要求,首先通过将轻量级深度卷积神经网络MobileNetv3与YOLOv4算法结合,并利用3×3的深度可分离卷积代替PANet中的普通卷积,构建了用于水柱检测的网络模型M-YOLOv4;然后,从检测精度、模型容量和运行速度等方面将M-YOLOv4与YOLOv3、YOLOv4和YOLOv4-tiny等进行比较。研究结果表明:M-YOLOv4对水柱目标具有良好的检测效果,能够达到与YOLOv4相当的检测精度,并且参数量显著减少、运行速度更快。In order to solve the problem of accurate and rapid detection of water column targets at impact points and fully balance detection accuracy and real-time requirements,MobileNet v3,a lightweight deep convolutional neural network,was combined with YOLOv4 algorithm,and the standard convolution in PANet was replaced by 3×3 deep separable convolution.On this basis,M-YOLOv4 was built for water column detection.Next,this model was compared with YOLOv3,YOLOv4 and YOLOv4-tiny network models in the aspect of detection precision,model capacity and running speed.The results show that M-YOLOv4 is of favorable detection effect of water columns,reaching the detection precision equivalent to that of YOLOv4.Besides,the parameter quantity is significantly reduced with higher operating speed.
关 键 词:水柱检测 YOLOv4 深度可分离卷积 MobileNetv3 K-MEANS聚类算法
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33