检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周成祖[1] 吴文[1] 蔡晓强 ZHOU Chengzu;WU Wen;CAI Xiaoqiang(Xiamen Meiya Pico Information Co.,LTD,Xiamen,Fujian 361000,China)
机构地区:[1]厦门市美亚柏科信息股份有限公司,福建厦门361000
出 处:《数据与计算发展前沿》2023年第1期128-135,共8页Frontiers of Data & Computing
摘 要:【目的】大数据时代的数据量呈指数型增长,需要通过分类分级对数据进行管理。【方法】本文通过对数据进行分类分级,结合相关法律或标准,提出数据安全的两个要素:受侵害客体与受侵害程度,得到数据的安全级别,并设计了大数据安全防控模型。【结果】基于数据安全防控模型,实现基于分类分级的静态授权、对数据安全级别的动态控制、基于数据安全级别的动态授权与数据脱敏。【结论】数据的分类分级应当以法律、行业标准为依据,实施静态的分类分级工作,在此基础上采取动态定级、实时调控措施,才能保障数据安全可控。[Objective]Since data volume in the age of big data grows exponentially,to guarantee data security,effective and efficient data classification and categorization are necessary for data management.[Methods]In this paper,by classifying and categorizing data,combined with relevant laws and standards,two key elements of data security are presented,including the infringed object and degree.Then a security prevention and control model of big data is designed.[Results]Under this model,static authorization based on classification and categorization,dynamic control of data security level as well as dynamic authorization and data masking based on data security level are realized.[Conclusions]Data should be classified and categorized by laws and industry standards.Data safety and controllability can be guaranteed only by statistic classification and categorization as well as dynamic categorization and real-time control.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.99.38