基于分布式压缩感知的改进SOMP信道估计算法  被引量:3

An Improved SOMP Channel Estimation Algorithm Based on Distributed Compressed Sensing

在线阅读下载全文

作  者:王宇[1,2] 马秀荣[1,2] 单云龙[1,2] WANG Yu;MA Xiurong;SHAN Yunlong(School of Integrated Circuit Science and Engineering,Tianjin University of Technology,Tianjin 300384,China;Engineering Research Center of Communication Devices and Technology,Ministry of Education,Tianjin 300384,China)

机构地区:[1]天津理工大学集成电路科学与工程学院,天津300384 [2]光电器件与通信技术教育部工程研究中心,天津300384

出  处:《电讯技术》2023年第2期249-254,共6页Telecommunication Engineering

基  金:盲信号处理国家级重点实验室创新发展基金项目(6142413190101)。

摘  要:针对多径信道联合稀疏模型,基于分布式压缩感知理论提出了一种适用于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)通信系统的改进同时正交匹配追踪(Simultaneous Orthogonal Matching Pursuit,SOMP)信道估计算法。该算法首先联合多个符号利用比较残差和的方式,在每次迭代中估计各符号信道响应公共支撑集与相应元素直到公共支撑集估计结束,然后对各符号信道响应非公共支撑集单独进行估计,最终得到多个符号的信道响应估计值。仿真结果表明,改进的SOMP算法在JSM-2模型下性能与传统的SOMP算法相近,在JSM-1模型下性能优于传统的SOMP算法与OMP算法。For multipath channel joint sparse model,an improved simultaneous orthogonal matching pursuit(SOMP)channel estimation algorithm suitable for orthogonal frequency division multiplexing(OFDM)communication system is proposed based on distributed compressed sensing.The algorithm first combines multiple symbols and compares the residual sum.In each iteration,it estimates the common support set and corresponding elements of each symbol channel response until the end of the common support set estimation,and then the channel response of each symbol is estimated separately from the non-common support set,finally channel response estimates of multiple symbols are obtained.The simulation results show that the performance of the improved SOMP algorithm under the JSM-2 model is similar to that of the traditional SOMP algorithm,and the performance under the JSM-1 model is better than that of the traditional SOMP algorithm and OMP algorithm.

关 键 词:OFDM通信系统 信道估计 同时正交匹配追踪(SOMP) 联合稀疏模型 分布式压缩感知 

分 类 号:TN911.23[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象