检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵家琛 张劲东[1] 李梓瑜 ZHAO Jiachen;ZHANG Jindong;LI Ziyu(School of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211100,China)
机构地区:[1]南京航空航天大学电子信息工程学院,南京211100
出 处:《现代雷达》2022年第12期25-33,共9页Modern Radar
基 金:国家自然科学基金资助项目(62171220)。
摘 要:针对雷达系统面临的干扰场景复杂多变、人工设计抗干扰策略性能难以保证以及实时性不高的问题,构建了基于深度强化学习的智能决策生成模型,设计了有针对性的动作集、状态集和奖励函数。同时提出了基于双深度Q网络(DDQN)的决策网络训练算法,用于克服深度Q网络(DQN)算法中目标网络与评估网络相耦合导致Q值的过估计。仿真结果表明:与DQN、Q学习、人工制定策略与遍历策略库等方法相比,文中所设计的智能决策模型和训练方法对干扰的抑制效果好,泛化能力更强,反应时间更快,有效地提升了雷达自主决策能力。In order to solve the problems faced by radar system such as complex jamming scenes, low reliability and bad real-time performance, an intelligent decision generation model is constructed based on Deep Reinforcement Learning, where targeted action set, state set and reward function are designed. After that, a decision network training algorithm based on double deep Q-network is proposed to overcome the problem of Q value over estimation which caused by the coupling of target network and evaluation network in Deep Q-network(DQN). The simulation results show that, compared with DQN, Q learning and traversal algorithm, the intelligent decision model and training method designed in this paper have better interference suppression effect, stronger generalization ability and faster response time, and effectively improve the radar independent decision-making ability.
关 键 词:雷达智能决策 深度强化学习 深度Q网络 双深度Q网络
分 类 号:TN972[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.161.96