检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕建东 王新刚[1] LV Jian-dong;WANG Xin-gang(College of Computer Science and Technology,Qilu University of Technology(Shandong Academy of Sciences),Jinan Shandong 250300,China)
机构地区:[1]齐鲁工业大学(山东省科学院)计算机科学与技术学院,山东济南250300
出 处:《计算机仿真》2023年第1期339-344,共6页Computer Simulation
基 金:国家重点研发项目计划(2019YFB1404700)。
摘 要:新型冠状病毒肺炎目前已成为全球性的重大公共卫生事件。反转录·聚合酶链反应检测是检测新型冠状病毒肺炎的黄金手段,但从经济角度与效率角度来说,采用基于图像识别技术的计算机辅助诊断则是另一种行之有效的辅助检测手段,提出了一种类残差CNN-LSTM神经网络,针对串行结构卷积神经网络,采用类似于残差网络的思想提取图像的多级抽象特征并使用长短期记忆网络对其进行融合后识别;针对并行卷积神经网络,使用长短期记忆网络融合来自不同结构卷积神经网络的特征后进行识别。上述方法在加州大学开源的数据集上进行了验证,取得了Recall为0.9655,F1-score为0.8819,accuracy为87.25%,AUC为90.72的识别结果,相较于传统结构的卷积神经网络,各项性能指标提高了2~10个百分点。COVID-19 has now become a major global public health event. Reverse transcription and polymerase chain reaction detection are the golden methods for detecting novel coronavirus pneumonia, but from the economic and efficiency perspective, the use of computer-aided diagnosis based on image recognition technology is another effective auxiliary detection method. In this paper, a kind of residual CNN-LSTM neural network is proposed. Aiming at the serial structure convolutional neural network, the idea similar to the residual network was used to extract the multi-level abstract features of the image and the long and short-term memory network was used to recognize them after fusion. For parallel convolutional neural networks, long and short-term memory networks were used to fuse features from different convolutional neural networks for recognition. This method was verified on the open source data set of the University of California, and the Recall was 0.9655,the F1-score was 0.8819,the accuracy was 87.25%,and the AUC was 90.72. Compared with the traditional structure of the convolutional neural network, the recognition results Performance indicators have increased by 2 to 10 percentage points.
关 键 词:特征融合 新冠肺炎 图像识别 卷积神经网络 长短期记忆网络 计算机辅助识别
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222