检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁俊欢 董峦[4] 孙宗玖[1] 马海燕[2,3] 艾尼玩·艾买尔 阿仁 魏鹏[2,3] 田聪[2,3] 阿斯娅·曼力克[2,3] 郑逢令[2,3] LIANG Jun-huan;DONG Luan;SUN Zong-jiu;MA Hai-yan;AINIWAN·Aimaier;Aren;WEI Peng;TIAN Cong;ASIYA·Manlike;ZHENG Feng-ling(College of Grassland Science,Xinjiang Agricultural University,Urumqi 830052,China;Institute of Grassland Research,Xinjiang Academy of Animal Science,Urumqi830057,China;Field Orientation Observation and Research Station of Grassland Ecological Environment on the Northern Slope of Tianshan Mountains,Xinjiang Academy of Animal Science,Urumqi830057,China;College of Computer and Information Engineering,Xinjiang Agricultural University,Urumqi 830052,China)
机构地区:[1]新疆农业大学草业学院,乌鲁木齐830052 [2]新疆畜牧科学院草业研究所,乌鲁木齐830057 [3]新疆畜牧科学院天山北坡草地生态环境野外定位观测研究站,乌鲁木齐830057 [4]新疆农业大学计算机与信息工程学院,乌鲁木齐830052
出 处:《草食家畜》2023年第1期44-51,共8页Grass-Feeding Livestock
基 金:国家自然科学基金项目(31860679)。
摘 要:白喉乌头(Aconitum leucostomum)是伊犁的主要毒害草之一。快速精准识别白喉乌头可为监测其分布和扩散提供必要的数据和技术支持。本研究利用无人机影像获取白喉乌头影像并构建数据集,分别采用深度残差网络ResNet50和ResNet101提取特征,应用深度学习目标检测算法Mask-RCNN对白喉乌头自动识别。结果表明,通过对比测试集的检测精度,ResNet50的平均精确度(mAP)最高,达到66.0%,ResNet101的mAP最低,为65.3%,ResNet50网络在检测白喉乌头的性能表现优异。Mask-RCNN应用于无人机影像识别白喉乌头,实现白喉乌头的自动检测切实可行。Aconitum leucostomum was one of the main poisonous grasses in Yili. Rapid and accurate identification of Aconitum leucostomum could provide necessary data and technical support for monitoring its distribution and diffusion. In this study, the images of Aconitum leucostomum were obtained by UAV images and the data set was constructed. The deep residual networks ResNet50 and ResNet101 were used to extract the features, and the deep learning object detection algorithm Mask-RCNN was used to automatically recognize Aconitum leucostomum. The results showed that by comparing the detection accuracy of the test set, the mean average precision(mAP) of ResNet50 was the highest(66.0%), and that of ResNet101 was the lowest(65.3%). ResNet50 network had excellent performance in detecting Aconitum leucostomum. Mask-RCNN was applied to recognize Aconitum leucostomum in UAV image, and it is feasible to realize the automatic detection of Aconitum leucostomum.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7