检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭阳红[1] 杨勃 惠玲利 郭潇潇 罗琼辉 TAN Yanghong;YANG Bo;HUI Lingli;GUO Xiaoxiao;LUO Qionghui(College of Electrical and Information Engineering,Hunan University,Changsha 410082,China)
机构地区:[1]湖南大学电气与信息工程学院,湖南长沙410082
出 处:《湖南大学学报(自然科学版)》2023年第2期150-156,共7页Journal of Hunan University:Natural Sciences
基 金:国家自然科学基金资助项目(51577046,51637004)。
摘 要:目前的配电网故障诊断方案大多需要大量故障模拟作为支撑.随着配电网规模不断扩大,故障概率逐年增加,该类方法极易受不同故障类型及个数的限制,使得模拟计算量骤增,难以快速诊断,为此本文提出了一种基于统一特征的配电网故障诊断方法 .首先利用稀疏测点电压增量关系,推导出配电网的统一故障特征;然后引入神经网络构建故障诊断模型,结合实例测试统一特征诊断方法并分析其计算量优势;最后将统一特征诊断方法推广至大规模配电网,通过撕裂法进行分区,实现各子网并行诊断.多个诊断实例结果表明,所提方法利用稀疏电压增量值即可有效诊断,其模拟次数与故障类型及个数无关,仅取决于支路条数,大大降低了计算量,且对测量数据无严格同步要求.Most current distribution network fault diagnosis schemes need to be supported by a large number of fault simulations. With the continuous expansion of the scale of the distribution network, the fault probability increases year by year. This kind of method can easily be limited by different fault types and numbers, resulting in a sharp increase in the amount of simulation calculation and difficulty in diagnosing quickly. Therefore, this paper proposed a fault diagnosis method based on unified features. Firstly, it used the voltage increment relationship of sparse measuring points to deduce the unified fault characteristics of the distribution network and introduced a neural network to build the fault diagnosis model. Combined with an example, the unified feature diagnosis method is tested, and its computational advantage is analyzed. After that, it extended the unified feature diagnosis method to a large-scale distribution network and realized the parallel diagnosis of each sub-network through the partition method. The results of several diagnosis examples show that the proposed method can diagnose effectively by using the sparse voltage increment value. The simulation times are independent of the fault type and number but only depend on the number of branches, which greatly reduces the amount of calculation, and has no strict synchronization requirements for the measured data.
分 类 号:TM726[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49