检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田湘椿 谭超华 Tian Xiangchun;Tan Chaohua(School of Physics and Electronics,Shandong Normal University,Jinan 250014,Shandong,China)
机构地区:[1]山东师范大学物理与电子科学学院,山东济南250014
出 处:《光学学报》2022年第21期32-39,共8页Acta Optica Sinica
基 金:山东省自然科学基金(ZR2021MA035);山东省高等学校“青创科技支持计划”(2021KJ006)。
摘 要:基于由矩形势垒调制的三能级Λ型相干介质中的电磁感应透明(EIT)现象,提出一种实现弱光水平下全光开关的理论方案。首先,在半经典理论框架下,导出描述光脉冲在系统中动力学演化的MaxwellBloch方程组,并通过多重尺度法,得到描述光脉冲在矩形势垒调制下传播的非线性薛定谔方程(NLSE)。其次,系统研究了单光孤子和双光孤子对称、非对称等入射情况下矩形势垒中传播模式与截止模式的激发特性,系统分析了入射双光孤子的相位、矩形势垒的强度和宽度等对矩形势垒中不同模式传播特性的影响。最后,基于上述研究设计出一种弱光水平下,通过改变矩形势垒特征参数与入射光脉冲相位的全光开光。On the basis of the electromagnetically induced transparency(EIT)phenomenon which occurs in threelevelΛtype coherent media modulated by rectangular barriers,a theoretical scheme is proposed to achieve an alloptical switch at a weak light level.The MaxwellBloch equations are derived to describe the dynamic evolution of optical pulses in the system under the semiclassical framework.By the multiscale method,the nonlinear Schrödinger equation(NLSE)describing the propagation of optical pulses under the modulation of rectangular barriers is obtained.In different incident cases,such as single optical soliton incidence,as well as symmetric and asymmetric double optical soliton incidence,this study systematically investigates the excitation properties of propagation modes and cutoff modes in the rectangular barrier.Moreover,it analyzes the influence of the phase of incident double optical solitons and the intensity and width of rectangular barriers on the propagation properties of different modes in rectangular barriers.Finally,this paper proposes an alloptical switch at a weak light level by changing the characteristic parameters of rectangular barriers and the phase of the incident optical pulses.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49