检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李卓越 汪诚[1] 李秋良 郭振平 李彬 李鑫 Li Zhuoyue;Wang Cheng;Li Qiuliang;Guo Zhenping;Li Bin;Li Xin(Fundamentals Department,Air Force Engineering University,Xi’an 710051,Shaanxi,China)
出 处:《激光与光电子学进展》2022年第21期254-261,共8页Laser & Optoelectronics Progress
基 金:陕西省科研计划(SKJH20070405)。
摘 要:渗铝作为航空发动机涡轮叶片高温防护的重要手段,其质量与飞行安全密切相关。渗铝层厚度是评估渗层性能的重要因素,但目前的无损检测方法难以对其进行准确测量。针对该问题,将X射线荧光技术与极端梯度提升(XGBoost)算法相结合,通过Pearson相关系数筛选(PCCS)提取特征元素,构建渗铝层厚度预测模型。将该模型与K近邻回归、线性回归、支持向量机、随机森林模型预测结果的平均相对误差进行对比。结果表明,相比其他模型,PCCSXGBoost模型预测渗层厚度的平均相对误差最小,为1.60%。该研究为渗铝层厚度的无损检测提供了一种新的预测方法。As an important means of hightemperature protection for aeroengine turbine blades,the quality of aluminized coatings is closely related to flight safety.The thickness of the aluminized layer is an essential factor in evaluating its performance.However,it is not easy to measure it accurately by current nondestructive testing methods.For this problem,the Xray fluorescence technology is combined with the extreme gradient boosting(XGBoost)algorithm,and the feature element extraction by Pearson correlation coefficient screening(PCCS)is used to build a prediction model for the thickness of the aluminized layer.The average relative error of the prediction results is compared with K nearest neighbor regression,linear regression,support vector machine,and random forest models.The results show that the PCCSXGBoost model had the smallest average error of 1.60%in predicting thickness compared with other models.The study provides a new prediction method for nondestructive testing of the thickness of the aluminized layer.
分 类 号:TL817[核科学技术—核技术及应用]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171