Dilation theory and analytic model theory for doubly commuting sequences of C._(0)-contractions  

在线阅读下载全文

作  者:Hui Dan Kunyu Guo 

机构地区:[1]College of Mathematics,Sichuan University,Chengdu 610065,China [2]School of Mathematical Sciences,Fudan University,Shanghai 200433,China

出  处:《Science China Mathematics》2023年第2期303-340,共38页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.11871157 and 12101428)。

摘  要:It is known that every C·_(0)-contraction has a dilation to a Hardy shift.This leads to an elegant analytic functional model for C·_(0)-contractions,and has motivated lots of further works on the model theory and generalizations to commuting tuples of C·_(0)-contractions.In this paper,we focus on doubly commuting sequences of C·_(0)-contractions,and establish the dilation theory and the analytic model theory for these sequences of operators.These results are applied to generalize the Beurling-Lax theorem and Jordan blocks in the multivariable operator theory to the operator theory in the infinite-variable setting.

关 键 词:doubly commuting sequence dilation theory analytic functional model Beurling-Lax theorem Jordan block 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象