New structures for colored HOMFLY-PT invariants  

在线阅读下载全文

作  者:Shengmao Zhu 

机构地区:[1]Department of Mathematics,Zhejiang Normal University,Jinhua 321004,China [2]Center of Mathematical Sciences,Zhejiang University,Hangzhou 310027,China

出  处:《Science China Mathematics》2023年第2期341-392,共52页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant No.12061014)。

摘  要:In this paper,we present several new structures for the colored HOMFLY-PT(Hoste-Ocneanu-Millet-Freyd-Lickorish-Yetter-Przytycki-Traczyk)invariants of framed links.First,we prove the strong integrality property for the normalized colored HOMFLY-PT invariants by purely using the HOMFLY-PT skein theory developed by Morton and his collaborators.By this strong integrality property,we immediately obtain several symmetric properties for the full colored HOMFLY-PT invariants of links.Then we apply our results to refine the mathematical structures appearing in the Labastida-Mari?o-Ooguri-Vafa(LMOV)integrality conjecture for framed links.As another application of the strong integrality,we obtain that the q=1 and a=1 specializations of the normalized colored HOMFLY-PT invariant are well-defined link polynomials.We find that a conjectural formula for the colored Alexander polynomial which is the a=1 specialization of the normalized colored HOMFLY-PT invariant implies that a special case of the LMOV conjecture for framed knots holds.

关 键 词:colored HOMFLY-PT invariant skein theory INTEGRALITY string duality 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象