Towards high strength cast Mg-RE based alloys:Phase diagrams and strengthening mechanisms  被引量:11

在线阅读下载全文

作  者:Janet M.Meier Josh Caris Alan A.Luo 

机构地区:[1]Department of Materials Science and Engineering,The Ohio State University,Columbus,OH 43210,USA [2]Terves LLC,Euclid,OH 44117,USA [3]Department of Integrated Systems Engineering,The Ohio State University,Columbus,OH 43210,USA

出  处:《Journal of Magnesium and Alloys》2022年第6期1401-1427,共27页镁合金学报(英文)

基  金:partially funded by the United States Army Research Laboratory (ARL);Terves LLC。

摘  要:Mg-rare earth(RE)based systems provide several important commercial alloys and many alloy development opportunities for high strength applications,especially in aerospace and defense industries.The phase diagrams,microstructure,and strengthening mechanisms of these multicomponent systems are very complex and often not well understood in literature.We have calculated phase diagrams of important binary,ternary,and multicomponent RE-containing alloy systems,using CALPHAD(CALculation of PHAse Diagrams).Based on these phase diagrams,this paper offers a critical overview on phase equilibria and strengthening mechanisms in these alloy systems,including precipitation,long period stacking order(LPSO),and other intermetallic phases.This review also summarized several promising Mg-RE based cast alloys in comparison with commercial WE54 and WE43 alloys;and explored new strategies for future alloy development for high strength applications.It is pointed out that the combination of precipitation and LPSO phases can lead to superior strength and ductility in Mg-RE based cast alloys.The precipitates and LPSO phases can form a complex three-dimensional network that effectively impedes dislocation motion on the basal and non-basal planes.The LPSO phases can also prevent the coarsening of precipitates when they interact,thus providing good thermal stability at elevated temperatures.Future research is needed to determine how the combination of these two types of phases can be used in alloy design and industrial scale applications.

关 键 词:Magnesium alloys Phase diagrams Precipitation strengthening Long period stacking order(LPSO) Alloy development CALPHAD 

分 类 号:TG146.22[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象