Excellent plasma electrolytic oxidation coating on AZ61 magnesium alloy under ordinal discharge mode  被引量:2

在线阅读下载全文

作  者:Weiyi Zhang Yunhui Du Peng Zhang 

机构地区:[1]School of Mechanical,Electronic and Control Engineering,Beijing Jiaotong University,Beijing 100044,China

出  处:《Journal of Magnesium and Alloys》2022年第9期2460-2474,共15页镁合金学报(英文)

基  金:supported by the National Natural Science Foundation of China(No.50974010);the Beijing Natural Science Foundation(No.2162036);the National Training Program of Innovation and Entrepreneurship for Undergraduates(No.202010004006)。

摘  要:In the preparation of plasma electrolytic oxidation(PEO)coating,the rapid heating of freely-happened electron avalanche under traditional discharge(TD)mode inevitably results in a strong eruption of electric breakdown melt.The PEO coating is loose and invariably composed of a very thin inner dense layer and an outer loose layer,as a result of which its properties and application have been limited greatly.In this work,for purpose of weakening the eruption of breakdown melt,thickening the inner dense layer,densifying the outer loose layer and improving the performance of PEO coating,ordinal discharge(OD)mode of PEO coating is developed by regulating the mass ratio of MgF_(2) to MgO(α)and voltage in the PEO investigation on AZ61 magnesium alloy in KF-KOH electrolyte.The formation mechanism under different discharge mode,electrochemical corrosion and wear of PEO coatings are investigated.The results show that the suitableαand voltage for effective OD are 1.3 and 130 V under which the freely-happened electron avalanche in MgF_(2) under TD mode can be restricted by the adequate adjacent MgO.Compared with TD mode,the inner dense layer,in which the(10¯1)plane of MgF_(2) is parallel to the(111)plane of MgO at their well-knit semi-coherent interface,is thickened to 2.4∼7.2 times,the corrosion potential(E_(corr))improvement is enlarged to 3.6∼13.2 times and the corrosion current intensity(I_(corr))is reduced from 10.8∼9.499 to 0.433(10^(−6) A/cm^(2)).The outer loose layer is densified and the wear rate is lessened 65.5%∼89.8%by the evident melioration in surface porosity,impedance and hardness.This work deepens the understanding about the discharge of PEO coating and provides an available OD mode for preparing excellent PEO coating.

关 键 词:Magnesium alloy Plasma electrolytic oxidation coating Ordinal discharge MICROSTRUCTURE Performance 

分 类 号:TG178[金属学及工艺—金属表面处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象