检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:达斯孟 DA Simeng(Ordos Human Resources and Social Security Bureau,Ordos Inner Mongolia 017400)
机构地区:[1]鄂尔多斯市人力资源和社会保障局,内蒙古鄂尔多斯017400
出 处:《软件》2023年第1期104-106,共3页Software
摘 要:RSA算法作为应用较为广泛的非对称加密算法,经过蒙哥马利模乘等算法的优化后主要基于有限域运算中大数的加法运算和乘法运算,数位规模通常在1024位甚至更高。大数的乘法运算随着参与运算位数的增加会导致RSA算法的运行时间效率下降。随着多核处理器架构的普及,如何在多核多线程并行运算背景下提高RSA算法效率就成为解决RSA算法性能瓶颈的关键。本文通过多核并行运算背景下分析大数乘法算法从而提出一种改进的适应多核运算的大数相乘算法,依靠此算法提高RSA算法和大规模科学计算中高精度浮点数运算效率。As a widely used asymmetric encryption algorithm, the RSA algorithm is mainly based on the addition and multiplication of large numbers in finite field operations after the optimization of Montgomery modular multiplication and other algorithms. The digital scale is usually 1024 bits or even higher. The multiplication of large numbers will lead to a decrease in the running time efficiency of the RSA algorithm as the number of bits involved in the operation increases. With the popularization of multi-core processor architecture, how to improve the efficiency of RSA algorithm in the context of multi-core and multi-thread parallel computing has become the key to solving the performance bottleneck of RSA algorithm. This paper analyzes the multiplication algorithm of large numbers in the context of multi-core parallel computing, and proposes an improved multi-core multiplication algorithm for large numbers. Relying on this algorithm, it improves the efficiency of high-precision floating-point arithmetic in RSA algorithm and large-scale scientific computing.
关 键 词:非对称加密算法 RSA 大数乘法运算 COMBA算法
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.215.60